Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T10:33:27.817Z Has data issue: false hasContentIssue false

Hydrogen Diffusion in Chalcopyrite Solar Cell Materials

Published online by Cambridge University Press:  10 February 2011

A. Weidinger
Affiliation:
Hahn-Meitner Institute Berlin, Glienickerstr. 100, D-14109 Berlin, weidinger@hmi.de
J. Krauser
Affiliation:
Hahn-Meitner Institute Berlin, Glienickerstr. 100, D-14109 Berlin, weidinger@hmi.de
Th. Riedle
Affiliation:
Hahn-Meitner Institute Berlin, Glienickerstr. 100, D-14109 Berlin, weidinger@hmi.de
R. Klenk
Affiliation:
Hahn-Meitner Institute Berlin, Glienickerstr. 100, D-14109 Berlin, weidinger@hmi.de
M. Ch. Lux-Steiner
Affiliation:
Hahn-Meitner Institute Berlin, Glienickerstr. 100, D-14109 Berlin, weidinger@hmi.de
M. V. Yakushev
Affiliation:
Department of Physics, University of Salford, Salford M5 4WT, UK
Get access

Abstract

Hydrogen diffusion in CuInSe 2 single crystals and CuInS2 thin films was studied by measuring the spreading of implantation profiles upon annealing. Deep implantation with an ion energy of 10 keV and sub-surface implantation with 300 eV were applied. The diffusion coefficients in both materials were found to be in the order of 10-14 to 10-13 cm2/s in the temperature range between 400 and 520 K.These fairly low diffusivities are typical for a trap and release transport process rather than intrinsic diffusion of interstitial hydrogen. In the polycrystalline CuInS2 films, hydrogen leaves the sample through the grain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yakushev, M. V., Neumann, H., Tomlinson, R.D., Rimmer, P., Lippold, G., Crys. Res. Technol. 29, 417 (1994)Google Scholar
2. Töpper, K., Bruns, J., Scheer, R., Weber, M., Weidinger, A., Bräuning, D., Appl. Phys. Lett. 71 482484 (1997)Google Scholar
3. Krauser, J., Weidinger, A., Lippold, G., Otte, K., Bruns, J., Töpper, K., Scheer, R., Klenk, R., Weber, M., and Lux-Steiner, M.Ch, Proc. 14th European Photovoltaic Solar Energy Conference and Exhibition, Barcelona, Spain (1997) pp. 20722074 Google Scholar
4. Fink, D., Krauser, J., Lippold, G., Yakushev, M.V., Thomlinson, R.D., Weidinger, A., Dwivedi, K.K., Gosh, S. and Chung, W.H., Rad. Eff Def (1998), in pressGoogle Scholar
5. Krauser, J., Wulf, F., Bräunig, D., J. Non-Cryst. Sol. 187, 264 (1995)Google Scholar
6. Fink, D., Krauser, J., Nagengast, D., Murphy, T. Almeida, Erxmeier, J., Palmetshofer, L., Braunig, D., Weidinger, A., Appl. Phys. A 61, 381388 (1995)Google Scholar
7. Ayres de Campos, N., Gil, J.M., Mendes, P.J., Ferreira, L.P., Alberto, H.V., Cox, S.F.J., Weidinger, A., ISIS Experimental Report (1998), Rutherford Appleton Laboratory and to be publishedGoogle Scholar