Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T13:00:05.271Z Has data issue: false hasContentIssue false

Hydrogen Production by Steam Reforming of Methanol over New Ag-Au(1-D)-CeO2 Catalyst

Published online by Cambridge University Press:  01 February 2011

R. Pérez-Hernández
Affiliation:
Instituto Nacional de Investigaciones Nucleares, Carr. México-Toluca S/N La Marquesa, Ocoyoacac, Edo. de México C. P. 52750, México. E-mail: raul.perez@inin.gob.mx e-mail: Claudia.gutierrez@inin.gob.mx
A. Gutiérrez-Martínez
Affiliation:
Instituto Nacional de Investigaciones Nucleares, Carr. México-Toluca S/N La Marquesa, Ocoyoacac, Edo. de México C. P. 52750, México. E-mail: raul.perez@inin.gob.mx e-mail: Claudia.gutierrez@inin.gob.mx
Get access

Abstract

A Ag-Au(1-D)-CeO2 catalyst was prepared by precipitation method using Ag-Au nanowires and Ce(NO3)3·6H2O as precursors. The catalytic activity of the catalysts was evaluated in a steam reforming of methanol (SRM) reaction from 250 to 475 °C. 100 % of methanol conversion was observed at 450 °C together with high H2 selectivity. This study evidenced that the use of 1-D metallic nanostructures could be used as an active phase on a CeO2 matrix for steam reforming of methanol for H2 generation to be used as fuel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Pettersson, L.J., Westerholm, R.: Int J Hydrogen Energy, 26(3), (2001) 243–64.Google Scholar
[2]. Lindstrom, B., Pettersson, L.J.: Catal Lett, 74(1–2), (2001) 2730.Google Scholar
[3]. Yaseneva, P., Pavlova, S., Sadykov, V., Moroz, E., Burgina, E., Dovlitova, L., Rogov, V., Badmaev, S., Belochapkin, S., J. Ross. Catal. Today 138 (2010) 175182.Google Scholar
[4]. Muhamad, E.N., Irmawati, R., Taufiq-Yap, Y.H., Abdullah, A.H., Kniep, B.L., Girgsdies, F., T. Ressler. Catal. Today 131 (2010) 118124.Google Scholar
[5]. Pérez-Hernández, R., Gutiérrez-Martínez, A., Gutiérrez-Wing, C.E.. Int J Hydrogen Energy 32 (2007) 28882894.Google Scholar
[6]. Pérez-Hernándezl, R., Longoria, L. C., Palacios, J., Aguila, Ma. M. and Rodríguez, V.. Energy Materials 3 (3) (2010) 152157.Google Scholar
[7]. Pérez-Hernándeza, R., Galicia, G. Mondragón, Anaya, D. Mendoza, Palacios, J., Angeles-Chavez, C. and Alatorre, J. Arenas. Int J Hydrogen Energy 33 (2010) 45694576.Google Scholar
[8]. Cameron, D., Holliday, R., Thompson, D., J. Power Sources 118 (2003) 298303.Google Scholar
[8]. Wang, X., Rodriguez, J.A., Hanson, J.C., Perez, M., Evans, J., J. Chem. Phys. 123 (2005) 221101.Google Scholar
[9]. Chang, F.W., Yu, H.Y., Roselin, L.S., Yang, H.C., Appl. Catal. A: Gen 290 (2005) 138147.Google Scholar
[10] Pérez-Hernández, R., Gutiérrez-Martínez, A., Mayoral, A., Deepak, F. Leonard, Fernández-García, Ma. E., Mondragón-Galicia, G., Miki, M., Jose-Yacaman, M.. Advanced Materials Research 132 (2010) 205219.Google Scholar