Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T18:19:54.606Z Has data issue: false hasContentIssue false

Hydrogen Purification using Ultra-Thin Palladium Films Supported on Porous Anodic Alumina Membranes

Published online by Cambridge University Press:  01 February 2011

Alexander Kirchner
Affiliation:
a.kirchner@irl.cri.nz, Industrial Research Ldt., MacDiarmid Institute, Gracefield Road, PO Box 31-310, Lower Hutt, N/A, New Zealand, ++ 64 4 931 3155
Ian W.M. Brown
Affiliation:
i.brown@irl.cri.nz, MacDiarmid Institute for Advanced Materials and Nanotechnology, Industrial Research, PO Box 31-310, Lower Hutt, N/A, New Zealand
Mark E. Bowden
Affiliation:
m.bowden@irl.cri.nz, MacDiarmid Institute for Advanced Materials and Nanotechnology, Industrial Research, PO Box 31-310, Lower Hutt, N/A, New Zealand
Tim Kemmitt
Affiliation:
t.kemmitt@irl.cri.nz, MacDiarmid Institute for Advanced Materials and Nanotechnology, Industrial Research, PO Box 31-310, Lower Hutt, N/A, New Zealand
Get access

Abstract

Nanostructured anodic alumina membranes have been utilized as high-temperature stable supports for 150 nm thick continuous palladium films. The palladium has been deposited by vacuum evaporation onto the rotating substrate. The thermal stability of the resulting compound membranes has been demonstrated for temperatures up to 700ºC under a reducing atmosphere. Hydrogen permeation has been measured up to 280ºC, where the permeability has a value of 2.5·10-7 mol m-2 s-1 Pa-1. At the same time the selectivity factor over carbon dioxide is at least 33.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jarosch, K. and Lasa, H.I. de, Ind. Eng. Chem. Res. 40, 5391 (2001).Google Scholar
2. Grashoff, G.J., Pilkington, C.E. and Corti, C.W., Platinum Met. Rev. 27, 157 (1983).Google Scholar
3. Uemiya, S., Matsuda, T. and Kikuchi, E., J. Memb. Sci. 56, 315 (1991).Google Scholar
4. Nam, S.E., Lee, S.H. and Lee, K.H., J. Memb. Sci. 153, 163 (1999).Google Scholar
5. Tanaka, D.A.P., Tanco, M.A.L., Niwa, S., Wakui, Y., Mizukami, F., Namba, T. and Suzuki, T.M., J. Memb. Sci. 247, 21 (2005).Google Scholar
6. Itoh, N., Tomura, N., Tsuji, T. and Hongo, M., Microporous Mesoporous Mater. 39, 103 (2000).Google Scholar
7. Inguanta, R., Amodeo, M., döAgostino, F., Volpe, M., Piazza, S. and Sunseri, C., Desalination 199, 352 (2006).Google Scholar
8. Kirchner, A., MacKenzie, K.J.D., Brown, I.W.M., Kemmitt, T. and Bowden, M.E., J. Memb. Sci. 287, 264 (2007).Google Scholar
9. Lee, W., Ji, R., Gösele, U. and Nielsch, K., Nat. Mater. 5, 741 (2006).Google Scholar
10. Roy, S., Raju, R., Chuang, H.F., Cruden, B.A. and Meyyappan, M., J. Appl. Phys. 93, 4870 (2003).Google Scholar
11. Kirchner, A., Brown, I.W.M., Bowden, M.E., Kemmitt, T. and Smith, G., Curr. Appl. Phys. (2007) submitted.Google Scholar