Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T16:24:59.292Z Has data issue: false hasContentIssue false

Hydrogen-Induced Passivation of Deep Traps in n-GaAs:Si Grown on LT-GaAs

Published online by Cambridge University Press:  26 February 2011

E. C. Paloura
Affiliation:
Aristotle Univ. of Thessaloniki, Department of Physics, GR–54006, Greece.
A. Ginoudi
Affiliation:
University of Thrace, Dept. of Electrical and Computer Engineering, 67100, Greece.
B. Theys
Affiliation:
C.N.R.S., Lab. de Physique des Solides de Bellevue, F.92.195 Meudon Cedex, France.
J. Chevallier
Affiliation:
C.N.R.S., Lab. de Physique des Solides de Bellevue, F.92.195 Meudon Cedex, France.
C. B. Lioutas
Affiliation:
Aristotle Univ. of Thessaloniki, Department of Physics, GR–54006, Greece.
J. Kalomiros
Affiliation:
Aristotle Univ. of Thessaloniki, Department of Physics, GR–54006, Greece.
M. Lagadas
Affiliation:
F.O.R.T.H.-I.E.S.L., GR–71110, Crete, Greece.
Z. Hatzopoulos
Affiliation:
F.O.R.T.H.-I.E.S.L., GR–71110, Crete, Greece.
Get access

Abstract

We study the hydrogen-induced passivation of interface traps in n-GaAs:Si, grown by MBE at 580°C, with a buffer layer grown at 200 to 250°C (LT-buffer). In the as-grown samples, the LT-buffer contains As-precipitates, with a density of 4×1016 cm−3 and a diameter that depends on the LT-buffer growth temperature and takes values in the range 4–8nm. The epilayer/LT-buffer interface in the as-grown samples is characterised by interface related traps which dominate the electrical behaviour of the epitaxial layer. Secondary ion mass spectroscopy profiling of deuterated samples reveals that 2H has a nearly uniform concentration throughout the epilayer, while it accumulates at the interface. Hydrogenation induces a reduction of the interface trap concentration and a significant improvement of the carrier mobility values.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Smith, F. W., Calawa, A. R., Chen, C. L., Manfra, M. J. and Mahony, L. J., IEEE Elect. Dev. Let. EDL–9,77 (1987).Google Scholar
2 Warren, A. C., Woodall, J. M., Frecouf, J. L., Grischkowsky, D., Melloch, M. R. and Otsuka, N., Appl. Phys. Lett. 57, 1331 (1990).Google Scholar
3 Missous, M. and O’Hagan, S., J. Appl. Phys. 75,3396 (1994).Google Scholar
4 Melloch, M. R., Otsuka, N., Mahalingam, K., Warren, A. C., Woodall, J. M. and Kirchner, P. D., MRS Mater. Res. Symp. Proc. 241,113 (1992).Google Scholar
5 Lagadas, M., Hatzopoulos, Z., Calamiotou, M., Kayiambaki, M. and Christou, A., MRS Mater. Res. Symp. Proc. 325 (1994) (in press).Google Scholar
6 Lagadas, M. (private communication).Google Scholar
7 Pearton, S. J.Hydrogen in compound semiconductors” (Trans. Tech. Publications, Switzerland 1994).Google Scholar
8 Woodward, T. K., Cunningham, J. E., Jan, W. Y. and Kastalsky, A., Appl. Phys. Lett. 65, 2174(1994).Google Scholar
9 Ballingall, J. M., Ho, P., Smith, R. P., Wang, S., Tessmer, G., Yu, T., Hall, E. L. and Hutchins, G., MRS Mater. Res. Symp. Proc. 241,171 (1992).Google Scholar
10 Yamasaki, K., Yoshida, M. and Sugano, T., Jpn. J. Appl. Phys. 18,113 (1979).Google Scholar
11 Paloura, E. C., Ginoudi, A., Konstandinidis, G. and Kiriakidis, G., Sensors and Actuators A, 33,63(1992).Google Scholar
12 Look, D. C., Walters, D. C., Robinson, G. D., Sizelove, J. R., Mier, M. G. and Stutz, C. E., J. Appl. Phys. 74,306 (1993).Google Scholar
13 Lau, W. S., Chong, T. C., Tan, L. S., Goo, C. H. and Goh, K. S., Jap. J. Appl. Phys. 30, L1843(1991).Google Scholar
14 Fang, Z.-Q. and Look, D. C., Appl. Phys. Lett. 63,219 (1993).Google Scholar
15 Jaeger, N. D., Dresszer, P., Newman, N., Verma, A. K., Liliental,-Weber, Z. and Weber, E. R., Mater. Sci. Forum, 143–147,1599 (1994).Google Scholar