Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-16T05:10:58.758Z Has data issue: false hasContentIssue false

Hysteresis of Long-Range Ordering in CuAu

Published online by Cambridge University Press:  21 February 2011

B. Chalupa
Affiliation:
Institute of Metal Physics, Charles University, Ke Karlovu 5, CS-121 16 Praha, Czech Republic
F. Chmelik
Affiliation:
Institute of Metal Physics, Charles University, Ke Karlovu 5, CS-121 16 Praha, Czech Republic
V. Sima
Affiliation:
Institute of Metal Physics, Charles University, Ke Karlovu 5, CS-121 16 Praha, Czech Republic
B. Sprusil
Affiliation:
Institute of Metal Physics, Charles University, Ke Karlovu 5, CS-121 16 Praha, Czech Republic
M. Spanl
Affiliation:
Institut für Festkörperphysik, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria
H. Lang
Affiliation:
Institut für Festkörperphysik, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria
W. Pfeiler
Affiliation:
Institut für Festkörperphysik, University of Vienna, Strudlhofgasse 4, A-1090 Vienna, Austria
Get access

Abstract

The effect of heating and cooling on the long-range order transformation in stoichiometric CuAu is investigated by several complementary measuring methods. Measurements of heat flow, resistometry and acoustic emission are done dynamically by linear heating/cooling. It is shown that measuring dynamically yields the expected effect of undercooling, which decreases with decreasing cooling rate. The dependence of undercooling on cooling rate is compared with the concept of continuous cooling for glass forming. A small influence of heating rate on disordering temperature is reported (retro-effect).

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sprusil, B., Sima, V., Chalupa, B. and Smola, B., Z. Metallkde. 84, 118 (1993).Google Scholar
2 Hansen, M. and Anderko, K., Constitution of Binary Alloys, 2nd Edition, McGraw-Hill, New York (1958).Google Scholar
3 Borelius, G., Johansson, C.H. and Linde, J.O., Ann. Phys. 86, 291 (1928).Google Scholar
4 Nyström, J., Arkiv Fysik 2, 151 (1950).Google Scholar
5 Dienes, G.J., J. Appl. Phys. 22, 1,020 (1951).Google Scholar
6 Barandiaran, J.M. and Colmenero, J., J.Non-Crystalline Solids 46, 277 (1981).Google Scholar
7 Arunachalam, V.S. and Cahn, R.W., J. Mat. Sci. 2, 160 (1967).Google Scholar
8 Kuczynski, G.C., Hochman, R.F. and Doyama, M., J. Appl. Phys. 26, 871 (1955).Google Scholar
9 Sato, K., Watanabe, D. and Ogawa, S., J.Phys. Soc. Japan 17, 1647 (1962).Google Scholar