Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T13:03:52.676Z Has data issue: false hasContentIssue false

Immobilization of oligonucleotide-functionalized magnetic nanobeads in DNA-coils studied by electron microscopy and atomic force microscopy

Published online by Cambridge University Press:  19 July 2011

Mattias Strömberg
Affiliation:
Department of Engineering Sciences, Uppsala University, Ångström Laboratory, Box 534, SE-751 21 Uppsala, Sweden.
Sultan Akhtar
Affiliation:
Department of Engineering Sciences, Uppsala University, Ångström Laboratory, Box 534, SE-751 21 Uppsala, Sweden.
Klas Gunnarsson
Affiliation:
Department of Engineering Sciences, Uppsala University, Ångström Laboratory, Box 534, SE-751 21 Uppsala, Sweden.
Camilla Russell
Affiliation:
Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden.
David Herthnek
Affiliation:
Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden.
Peter Svedlindh
Affiliation:
Department of Engineering Sciences, Uppsala University, Ångström Laboratory, Box 534, SE-751 21 Uppsala, Sweden.
Mats Nilsson
Affiliation:
Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden.
Maria Strømme
Affiliation:
Department of Engineering Sciences, Uppsala University, Ångström Laboratory, Box 534, SE-751 21 Uppsala, Sweden.
Klaus Leifer
Affiliation:
Department of Engineering Sciences, Uppsala University, Ångström Laboratory, Box 534, SE-751 21 Uppsala, Sweden.
Get access

Abstract

Immobilization of oligonucleotide-functionalized magnetic nanobeads by hybridization in DNA-coils formed by rolling circle amplification has been investigated using transmission electron microscopy (TEM) and atomic force microscopy (AFM). The TEM results supported earlier made observations that small beads with low oligonucleotide surface coverage preferably immobilize in the interior of the DNA-coils and do not tend to link several DNA-coils together whereas large beads with high surface coverage to a larger extent connect several DNA-coils together to clusters of several DNA-coils with beads. AFM provided direct visualization of the DNA-coils as thread-like objects. DNA-coils with immobilized beads appeared as a collection of beads with thread-like features in their near vicinity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M. R., Weigl, B. H., Nature 442, 412 (2006).10.1038/nature05064Google Scholar
2. Jenison, R., Yang, S., Haeberli, A., Polisky, B., Nat. Biotechnol. 19, 62 (2001).10.1038/83530Google Scholar
3. Kerman, K., Kobayashi, M., Tamiya, E., Meas. Sci. Tech. 15, R1 (2004).10.1088/0957-0233/15/2/R01Google Scholar
4. Klostranec, J. M., Xiang, Q., Farcas, G. A., Lee, J. A., Rhee, A., Lafferty, E. I., Perrault, S. D., Kain, K. C., Chan, W. C. W., Nano Lett. 7, 2812 (2007).10.1021/nl071415mGoogle Scholar
5. Tamanaha, C. R., Mulvaney, S. P., Rife, J. C., Whitman, L. J., Biosens. Bioelectron. 24, 1 (2008).10.1016/j.bios.2008.02.009Google Scholar
6. Mondi, C., Leifer, K., Mavrocordatos, D., Perret, D., J. Microsc. 207, 180 (2002).10.1046/j.1365-2818.2002.01058.xGoogle Scholar
7. Strömberg, M., Göransson, J., Gunnarsson, K., Nilsson, M., Svedlindh, P., Strømme, M., Nano Lett. 8, 816 (2008).10.1021/nl072760eGoogle Scholar
8. Svedlindh, P., Gunnarsson, K., Strömberg, M., Oscarsson, S.. Bionanomagnetism. In Nanomagnetism and Spintronics- Fabrication, Materials, Characterization and Applications; Nasirpouri, F., Nogaret, A., Eds.; World Scientific Publishing: Singapore, 2009.Google Scholar
9. Strömberg, M., Gunnarsson, K., Valizadeh, S., Svedlindh, P., Strømme, M., J. Appl. Phys. 101, 023911 (2007).10.1063/1.2424522Google Scholar
10. Strömberg, M., Zardán Gómez de la Torre, T., Göransson, J., Gunnarsson, K., Nilsson, M., Strømme, M., Svedlindh, P., Biosens. Bioelectron. 24, 696 (2008).10.1016/j.bios.2008.06.043Google Scholar
11. Strömberg, M., Zardán Gómez de la Torre, T., Göransson, J., Gunnarsson, K., Nilsson, M., Svedlindh, P., Strømme, M., Anal. Chem. 81, 3398 (2009).10.1021/ac900561rGoogle Scholar
12. Zardán Gómez de la Torre, T., Strömberg, M., Russell, C., Göransson, J., Nilsson, M., Svedlindh, P., Strømme, M., J. Phys. Chem. B 114, 3707 (2010).10.1021/jp911251kGoogle Scholar
13. Strömberg, M., Gunnarsson, K., Johansson, H., Nilsson, M., Svedlindh, P., Strømme, M., J. Phys. D: Appl. Phys. 40, 1320 (2007).10.1088/0022-3727/40/5/002Google Scholar
14. Akhtar, S., Strömberg, M., Zardán Gómez de la Torre, T., Russell, C., Gunnarsson, K., Nilsson, M., Svedlindh, P., Strømme, M., Leifer, K., Journal of Physical Chemistry B 114, 13255 (2010).10.1021/jp105756bGoogle Scholar
15. Melin, J., Jarvius, J., Göransson, J., Nilsson, M., Anal. Biochem. 368, 230 (2007).10.1016/j.ab.2007.05.001Google Scholar