Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:41:38.203Z Has data issue: false hasContentIssue false

Implantation of 1.5 MeV Ag+ Ions in Silica Glass

Published online by Cambridge University Press:  26 February 2011

K. Fukumi
Affiliation:
Government Industrial Research Institute, Osaka, 1-8-31, Midorigaoka, Ikeda, Osaka 563, Japan
A. Chayahara
Affiliation:
Government Industrial Research Institute, Osaka, 1-8-31, Midorigaoka, Ikeda, Osaka 563, Japan
J. Hayakawa
Affiliation:
Government Industrial Research Institute, Osaka, 1-8-31, Midorigaoka, Ikeda, Osaka 563, Japan
M. Satou
Affiliation:
Government Industrial Research Institute, Osaka, 1-8-31, Midorigaoka, Ikeda, Osaka 563, Japan
Get access

Abstract

Ag+ ions were implanted in silica glass at an acceleration energy of 1.5MeV. It is found that Ag atoms are present in both the metallic and ionic states. Ag atoms in the metallic state increase when the Ag atom concentration increases. It is shown that the structure of damaged glass recovers monotonically from the surface to the inside of the glass. The state of the Ag atoms does not depend on the glass structure damaged by ion implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arnold, G.W., Rad. Effects, 65, 257 (1982).Google Scholar
2. Mazzoldi, P., Nucl. Inst. Methods 209 /210, 1089 (1983).Google Scholar
3. Battaglin, G., Bertoncello, R., Boscolo-Boscoletto, A., Caccavale, F., Mazzoldi, P. and Polato, P., J. Non-Cryst. Solids 111, 36 (1989).Google Scholar
4. Bychkov, E.A., Vlasov, Yu.G., Dravin, V.A. and Semenov, V.G., J. Non-Cryst. Solids., 113, 203 (1989).Google Scholar
5. EerNisse, E.P., J. Appl. Phys. 45, 167 (1974).Google Scholar
6. Webb, A.P. and Townsend, P.D., J. Phys. D 9, 105 (1976).Google Scholar
7. Webb, A.P., Houghton, A.J. and Townsend, P.D., Rad. Effects 30, 177 (1976).Google Scholar
8. Arnold, G.W., Rad. Effects 47, 15 (1980).Google Scholar
9. Feng, Y., Acta Optica Sinica 9, 1037 (1989)Google Scholar
10. Perez, A., Treilleux, M., Capra, T. and Griscom, D.L., J. Mat. Sci. 2, 910 (1987).Google Scholar
11. Whichard, G., Hosono, H., Weeks, R.A., Zuhr, R.A. and Magruder, R.H. III, J. Appl. Phys. 67, 7526 (1990).Google Scholar
12. Arnold, G.W., IEEE Trans. Nucl. Sci. 20, 220 (1973).Google Scholar
13. Hosono, H., Weeks, R.A., Imagawa, H. and Zuhr, R., J. Non-Cryst. Solids 120, 250 (1990).Google Scholar
14. Arnold, G.W., J. Appl. Phys. 46, 4466 (1975).Google Scholar
15. Operation manual of PHI 5000 series ESCA systems.Google Scholar
16. Philipp, H.R., in Handbook of Opti cal Constants of Solids, edited by Palik, E.D. (Academic Press, Orlando, 1985), p. 749.Google Scholar
17. Fukumi, K., Chayahara, A., Satou, M., Hayakawa, J., Hangyo, M. and Nakashima, S., Jpn. J. Appl. Phys. 29, 905 (1990).Google Scholar
18. Biersack, J.P., in Beam Modification of Materials 2, Ion Beam Modification of Insulator, edited by Mazzoldi, P. and Arnold, G.W., (Elsevier, Amsterdam, 1987), p. 1 Google Scholar