No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
Fabrication of high performance III-V devices and integrated circuits depends on careful control of layer thicknesses and compositions in the as-grown epitaxial layers and in the etching of these layers. The relatively high value of compound semiconductor devices (compared with high-volume Si devices) makes the use of advanced process control (with expensive in situ sensors) potentially advantageous. Considerable attention has been given to the problems of realtime feedback control of MBE growth systems. In this paper, I will discuss experiences with use of both in situ and ex situ monitors for controlling reactive ion etching (RIE) of III-V materials. Specific examples from an electron cyclotron resonance (ECR) RIE base contact etch from an AlInAs/GalnAs HBT process will be given. The relative merits of reflection-based wafer sensors vs. process state sensors (optical emission spectroscopy and mass spectroscopy) will be discussed. The unique opportunities and problems associated with the III-V materials and required etch processes will be contrasted to implementation of advanced wafer state endpoint detection schemes in Si and flat panel display processes. Specific problems and solutions from our research which I will discuss include chamber seasoning effects on the drift of optical emission based endpoint detection schemes and signal processing techniques for accounting for this drift, modeling of the optical dielectric function of the compounds of interest vs. composition, and the effects of surface roughness on optical thickness measurements.