Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T04:22:57.324Z Has data issue: false hasContentIssue false

The Indefinite Containment of Nuclear Fuel Wastes

Published online by Cambridge University Press:  15 February 2011

D. W. Shoesmith
Affiliation:
Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba, Canada R0E 1L0.
F. King
Affiliation:
Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba, Canada R0E 1L0.
B. M. Ikeda
Affiliation:
Atomic Energy of Canada Limited, Whiteshell Laboratories, Pinawa, Manitoba, Canada R0E 1L0.
Get access

Abstract

The safe disposal of used fuel or vitrified reprocessed waste could be guaranteed if the containers remained intact indefinitely (> 106 a). Justification of indefinite containment may be possible if two criteria are met; (i) a sound mechanistic understanding of the corrosion and mechanical behaviour of the container material is available, and (ii) the disposal environment and its evolution with time can be confidently predicted. In disposal vaults in which the environmental conditions evolve from a short aggressive period to a long-term benign period, long container lifetimes are achievable. This approach is illustrated by discussing the possibility of indefinite containment of used fuel in a Canadian disposal vault using Ti alloys or Cu.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shoesmith, D.W., King, F. and Ikeda, B.M., AECL Report, AECL-10972, COG-94–534 (1995).Google Scholar
2. Kolář, M. and King, F. in Scientific Basis for Nuclear Waste Management XIX, Murphy, W.M. and Knecht, D. eds. (Mater. Res. Soc. Proc. 412 Pittsburgh, PA, 1996).Google Scholar
3. King, F., Ikeda, B.M. and Shoesmith, D.W., AECL Report, AECL- 11476, COG-95–531 (1995).Google Scholar
4. Frape, S.K., Fritz, P. and McNutt, R.H., Geochim. Cosmochim. Acta 48, 16171627 (1984).Google Scholar
5. Gascoyne, M., personal communication.Google Scholar
6. Kolář, M., unpublished data.Google Scholar
7. Shoesmith, D.W., Ikeda, B.M. and King, F., Modelling Aqueous Corrosion, Trethewey, K.R. and Roberge, P.R. (eds.), NATO ASI Series (Kluwer, Boston, 1994), p. 201.Google Scholar
8. King, F. and Kolář, M. in Scientific Basis for Nuclear Waste Management XIX, Murphy, W.M. and Knecht, D. eds. (Mater. Res. Soc. Proc. 412 Pittsburgh, PA, 1996).Google Scholar
9. Stroes-Gascoyne, S., Lucht, L.M., Borsa, J., Delaney, T.L., Haveman, S.A. and Hamon, C.J. in Scientific Basis for Nuclear Waste Management XVIII, Murakami, T. and Ewing, R.C. eds. (Mat. Res. Soc. Symp. Proc. 353 Pittsburgh, PA, 1995) pp. 345352.Google Scholar
10. King, F. and Stroes-Gascoyne, S. in Proc. 1995 Int. Conf. on MIC (American Welding Society, Miami, FL and NACE International, Houston, TX, 1995) pp. 35/1–35/14.Google Scholar
11. Brown, A.D., Microbial Water Stress Physiology, (John Wiley, New York, 1990).Google Scholar
12. Geesey, G. and Cragnolino, G.A. in Proc. 1995 Int. Conf. on MIC (American Welding Society, Miami, FL and NACE International, Houston, TX, 1995) pp. 76/1–76/20.Google Scholar
13. King, F., AECL Report, AECL-11471, COG-95–519 (1995).Google Scholar
14. Robinson, R.A. and Stokes, R.H., Electrolyte Solutions, 2nd ed. revised, Butterworths, London (1959).Google Scholar
15. Schutz, R.W. and Thomas, D.E., Metals Handbook, 9th ed., Vol.13, Corrosion (ASM International, Metals Park, OH, 1987), p. 669.Google Scholar
16. Little, B., Wagner, P. and Mansfeld, F., Int. Mat. Rev. 36, 253 (1991).Google Scholar
17. Ikeda, B.M., Bailey, M.G., Quinn, M.J. and Shoesmith, D.W. in Application of Accelerated Corrosion Tests to Service Life Prediction of Materials, Cragnolino, G. and Sridhar, N. eds. (ASTM STP 1194, Philadelphia, PA, 1994) pp. 126142.Google Scholar
18. Mattsson, H. and Olefjord, I., Werk. Korros. 41, 383 (1990).Google Scholar
19. Mattsson, H., Li, Changhai and Olefjord, I., Werk. Korros. 41, 578 (1990).Google Scholar
20. Clarke, C.F., Hardie, D. and Ikeda, B.M., Corros. Sci. 36, 487 (1994).Google Scholar
21. King, F. and Kolář, M., CORROSION/95, paper #425 (NACE International, Houston, 1995).Google Scholar
22. King, F. and LeNeveu, D.M., FOCUS '91 (American Nuclear Society, La Grange Park, IL, 1992), pp. 253261.Google Scholar
23. King, F., AECL Report, AECL-1 1472, COG-95–520 (1995).Google Scholar
24. Gascoyne, M., AECL Technical Record, TR-714, COG-95–487 (1995).Google Scholar
25. King, F., LeNeveu, D.M. and Jobe, D.J. in Scientific Basis for Nuclear Waste Management XVII, Barkatt, A. and Konynenburg, R.A. Van eds. (Mat. Res. Soc. Symp. Proc. 333 Pittsburgh, PA, 1994) pp. 901908.Google Scholar
26. Stroes-Gascoyne, S. and West, J.M. in Scientific Basis for Nuclear Waste Management XVIII, Murakami, T. and Ewing, R.C. eds. (Mat. Res. Soc. Symp. Proc. 353 Pittsburgh, PA, 1995) p.165172.Google Scholar
27. King, F., Appl. Geochem. 10, 477 (1995).Google Scholar
28. Raiko, H. and Salo, J.-K. in Scientific Basis for Nuclear Waste Management XIV, Abrajano, T.A. Jr. and Johnson, L.H. eds. (Mat. Res. Soc. Symp. Proc. 212 Pittsburgh, PA, 1991) pp. 351356.Google Scholar
29. Henderson, P.J., Österburg, J-O. and Ivarsson, B., SKB Technical Report, TR-92-04.Google Scholar