Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T10:30:19.233Z Has data issue: false hasContentIssue false

Indium Gallium Nitride on Germanium by Molecular Beam Epitaxy

Published online by Cambridge University Press:  01 July 2011

R.R. Lieten
Affiliation:
Department of Physics and Astronomy, K.U. Leuven, 3001 Leuven, Belgium IMEC, 3001 Leuven, Belgium
W.-J. Tseng
Affiliation:
Department of Physics and Astronomy, K.U. Leuven, 3001 Leuven, Belgium IMEC, 3001 Leuven, Belgium
M. Leys
Affiliation:
IMEC, 3001 Leuven, Belgium
J.-P. Locquet
Affiliation:
Department of Physics and Astronomy, K.U. Leuven, 3001 Leuven, Belgium
J. Dekoster
Affiliation:
IMEC, 3001 Leuven, Belgium
Get access

Abstract

Indium containing III-Nitride layers are predominantly grown by heteroepitaxy on foreign substrates, most often Al2O3, SiC and Si. We have investigated the epitaxial growth of InxGa1-xN (InGaN) alloys on Ge substrates. First we looked at the influence of buffer layers between the InGaN and Ge substrate. When applying a high temperature (850 °C) GaN buffer, the InGaN showed superior crystal quality. Furthermore the influence of growth parameters on the structural quality and composition of InGaN layers has been looked into. For a fixed gallium and nitrogen supply, the indium beam flux was increased incrementally. For both nitrogen- as well as for metal (Ga + In) rich growth conditions, the In incorporation increases for increasing In flux. However, for metal rich growth conditions, segregation of metallic In is observed. An optimum in crystal quality is obtained for a metal:nitrogen flux ratio close to unity. The XRD FWHM of the GaN (0002) reflection increases significantly after InGaN growth. Apparently the presence of indium deteriorates the GaN buffer during InGaN growth. The mechanism of the effect is not known yet.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, H. J., Shin, Y., Kwon, S.-Y., Kim, H. J., Choi, S., Hong, S., Kim, C. S., Yoon, J.-W., Cheong, H., Yoon, E., Journal of Crystal Growth 310, 3004 (2008).Google Scholar
2. Matioli, E., Neufeld, C., Iza, M., Cruz, S. C., Al-Heji, A.A., Chen, X., Farrell, R.M., Keller, S., DenBaars, S., Mishra, U., Nakamura, S., Speck, J., and Weisbuch, C., Appl. Phys. Lett. 98, 021102 (2011).Google Scholar
3. Reichertz, L.A., Gherasoiu, I., Yu, K.M., Kao, V.M., Walukiewicz, W. and Ager, J.W., Appl. Phys. Express 2, 122202 (2009).Google Scholar
4. Lang, J. R., Neufeld, C. J., Hurni, C. A., Cruz, S. C., Matioli, E., Mishra, U. K., and Speck, J. S., Appl. Phys. Lett. 98, 131115 (2011).Google Scholar
5. Cai, X.-M., Zeng, S.-W., and Zhang, B.-P., Applied Physics Letters 95 173504 (2009).Google Scholar
6. Lieten, R. R., Degroote, S., Cheng, K., Leys, M., Kuijk, M., and Borgh, G., Applied Physics Letters 89, 252118 (2006).Google Scholar
7. Trybus, E., Namkoong, G., Henderson, W., Doolittle, W.A., Liu, R., Mei, J., Ponce, F., Cheung, M., Chen, F., Furis, M., Cartwright, A., J. Crystal Growth 279, 311 (2005).Google Scholar
8. Lieten, R. R., Degroote, S., Kuijk, M., and Borghs, G., Applied Physics Letters 91, 222110 (2007).Google Scholar
9. Lieten, R. R., Degroote, S., Leys, M., and Borghs, G., Journal of Crystal Growth 311, 1306 (2009).Google Scholar
10. Lieten, R.R., Richard, O., Degroote, S., Leys, M., Bender, H., and Borghs, G., Journal of Crystal Growth 314, 71 (2011).Google Scholar