Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T18:03:37.413Z Has data issue: false hasContentIssue false

Indium in silicon: interactions with native defects and with C impurities

Published online by Cambridge University Press:  17 March 2011

P. Alippi
Affiliation:
CNR-IMM, Sezione Catania, Stradale Primosole 50, 95121 Catania, (Italy)
A. La Magna
Affiliation:
CNR-IMM, Sezione Catania, Stradale Primosole 50, 95121 Catania, (Italy)
S. Scalese
Affiliation:
CNR-IMM, Sezione Catania, Stradale Primosole 50, 95121 Catania, (Italy)
V. Privitera
Affiliation:
CNR-IMM, Sezione Catania, Stradale Primosole 50, 95121 Catania, (Italy)
Get access

Abstract

Equilibrium geometries and formation energies of neutral and charged In complexes with silicon native defects (vacancy (V) and self-interstitials (I)) and with C impurities are investigated within density functional theory, using the Vienna Ab-initio Simulation Package. We determine formation energies and ionization levels of different complexes and discuss the contribution of I and V to indium diffusion. We also identify the In-C defect responsible for the increased electrical activation in In+C-doped silicon samples. The ab initio energetics is then implemented in a continuum diffusion code in order to simulate the diffusion of as-implanted In profiles under different thermal treatments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kizilyalli, I. C., Rich, T. C., Stevie, F. A., and Rafferty, C. S., J. Appl. Phys. 80, 4944 (1996)Google Scholar
2. Scalese, S., Italia, M., Magna, A. La, Mannino, G., Privitera, V., Bersani, M., Giubertoni, D.. Barozzi, M., Solmi, S., and Pichler, P., J. Appl. Phys. 93, 9773 (2003).Google Scholar
3. Perdew, J.P., in Electronic Structure of Solids '91, eds. Ziesche, P. and Eschrig, H. (Akademie-Verlag, Berlin, 1991), p. 11.Google Scholar
4. Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993); ibidem 49, 14251 (1994).Google Scholar
5. Vanderbilt, D., Phys. Rev. B 40, 7892 (1990).Google Scholar
6. Lopez, G., Fiorentini, V., private communication.Google Scholar
7. Alippi, P., Magna, A. La, Scalese, S. and Privitera, V., Phys. Rev. B 69, 085213 (2004).Google Scholar
8. Makov, G. and Payne, M. C., Phys. Rev. B 51, 4014 (1995).Google Scholar
9. Segev, D., Wei, Su-Huai, Phys. Rev. Lett. 91, 126406 (2003)Google Scholar
10. Baron, R., Baukus, J. P., Allen, S. D., McGill, T. C., Young, M. H., Kimura, H., Winston, H. V., and Marsh, O. J., Appl. Phys. Lett. 34, 257 (1979).Google Scholar
11. FLOOPS process simulator: http://www.tec.ufl.edu/∼flooxs; ISE TCAD Release 9.0, ISE AG, Zurich, (2004).Google Scholar
12. Magna, A. La, Scalese, S., Alippi, P., Mannino, G., Privitera, V., Bersani, M., and Zechner, C., Appl. Phys. Lett. 83, 1956 (2003).Google Scholar