Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-30T15:17:13.381Z Has data issue: false hasContentIssue false

Inductively-Coupled Plasma Nitriding of Fused Silica

Published online by Cambridge University Press:  28 February 2011

T. K. Vethanayagam
Affiliation:
College of Ceramics, Alfred University, Alfred, NY 14802
P. F. Johnson
Affiliation:
College of Ceramics, Alfred University, Alfred, NY 14802
Get access

Abstract

Plasma nitriding of fused silica has been performed over a temperature range of 750°C to 1300°C in a nitrogen-hydrogen plasma generated by an inductively coupled RF discharge. The plasma is used as both thermal and chemical source. The effects of various process parameters such as surface temperature, gas pressure and treatment time on total nitrogen content have been studied. The advantages and the drawbacks of this direct plasma nitriding technique are briefly discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hu, S. H. and Gregor, L. V., J. Elec. Chem. Soc. 114 (8), 827 (1967).Google Scholar
2. Rand, M. J. and Standley, R. D., App. Opt. 11 (11), 2482 (1972).CrossRefGoogle Scholar
3. Mirsch, S. and Bauer, J., Phy. Stat. Sol. A 26, 579 (1974).Google Scholar
4. Topich, J. A., in Proc.Sym.onSiliconNitrideThinlnsulatingFilms, vol. 83–8, edited by Kapoor, V. J. and Stein, H. J. (The Electrochemical Society Inc., Pennington, NJ, 1983), p. 32.Google Scholar
5. Ito, T., Nozaki, T. and Ishikawa, H., J. Elec. Chem. Soc., 127 (9), 2053 (1980).Google Scholar
6. Kuiper, A. E. T., Willemsen, M. F. C., Theunissen, A. M. L., Wijgert, W. M. van de, Habraken, F. H. P. M., Tijhaar, R. H. G., Weg, W. F.van der and Chen, J. T., J. Appl. Phys. 59 (8), 2765 (1986).Google Scholar
7. Lucovsky, G., Tsu, D. V. and Markunas, R. J., in Mater.Res.Soc.Sym.Proc., vol.68, edited by Coburn, J. W., Gottscho, R. A. and Hess, D. W. (Mater. Res. Soc., Pittsburg, PA, 1986), p. 323.Google Scholar
8. Ito, T., Kato, I. and Ishikawa, H., in Mater.Res.Soc.Sym.Proc., vol.38, edited by R. Chang, P. H. and Abeles, B. (Mater. Res. Soc., Pittsburg, PA, 1985), p. 473.Google Scholar
9. Wong, S. S. and Oldham, W. G., IEEE Trans. on Electron Devices, vol.ED–32, No. 5, 978 (1985).Google Scholar
10. Nulman, J. and Krusius, J. P., Appl. Phys. Lett. 42 (2), 148 (1985).Google Scholar
11. Naik, I. K., Appl. Phys. Lett. 43 (6), 519 (1983).Google Scholar
12. Tessier, Y., Klemberg-Sapieha, J. E., Poulin-Dandurand, S. and Wertheimer, M.R., in Alater.Rea.Soc.Sym.Proc., vol.68, edited by Coburn, J. W., Gottscho, R. A. and Hess, D. W. (Mater. Res. Soc., Pittsburg, PA, 1986), p. 183.Google Scholar
13. Carlson, D. E., J. Appl. Phys. 47 (6), 2754 (1976).Google Scholar
14. Burlingame, N. H., Ph. D. Thesis, College of Ceramics, Alfred University, 1985.Google Scholar
15. Yoshida, T., Takata, R. and Akashi, K., Proc. Int. Conf. Vac. Metall. 7th, 1, 568 (1982).Google Scholar