Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-13T18:21:55.827Z Has data issue: false hasContentIssue false

Influence of Chemical Composition on the Epitaxy and Interfacial Quality of Fe/Au and Fe/Ag Multilayers

Published online by Cambridge University Press:  15 February 2011

R. Paniago
Affiliation:
Department of Physics, University of Houston, Houston, TX 77204-5506
P. C. Chow
Affiliation:
Department of Physics, University of Houston, Houston, TX 77204-5506
R. Forrest
Affiliation:
Department of Physics, University of Houston, Houston, TX 77204-5506
S. C. Moss
Affiliation:
Department of Physics, University of Houston, Houston, TX 77204-5506
S. S. P. Parkin
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099
D. Cookson
Affiliation:
ANSTO, Private Mail Bag 1, Menai 2234, Australia
Get access

Abstract

Fe/Au and Fe/Ag films grown on MgO(001) oriented substrates exhibit the same in-plane epitaxy since Au and Ag have the same fcc bulk structure and nearly equivalent lattice parameters. Using synchrotron X-ray reflectivity and high-angle Bragg scattering we show that Fe(15Å)/Au(21Å) multilayers grown by sputtering exhibit different profiles for Fe/Au and Au/Fe interfaces. We analyze this in view of the action of Au as a surfactant during the growth of Fe. Similar Fe/Ag multilayers have considerably worse interfacial quality since Fe and Ag do not interdiffuse, and this leads to the result that the interfaces cannot be described by error function profiles. Using non-specular x-ray reflectivity we show that whereas Fe/Au interfaces are self-affine, Fe/Ag interfaces exhibit two regimes of scaling behavior as a function of spatial wavelength. This suggests that two different mechanisms are important in describing the growth of Fe/Ag films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Parkin, S. S. P., Phys. Rev. Lett 71, 1641 (1993).Google Scholar
2. Mackay, J. F., Teichert, C., Savage, D. E. and Lagally, M. G., Phys. Rev. Lett. 77, 3925 (1996).Google Scholar
3. See, e.g., Begley, A. M., Kim, S. K., Quinn, J. and Jona, F., Phys. Rev. B 48, 1779 (1993).Google Scholar
4. Nakayama, N., Okuyama, T. and Shinjo, T., F. Phys.: Cond. Matt. 5, 1173 (1993) and G. Gladyszewsky, K. Temst, R, Schad, P. Belën, E. Kunnen, G. Verbanck and Y. Bruyneraede, Thin Solid Films 275, 180 (1996).Google Scholar
5. Sinha, S. K. et al., Physica B 198, 72 (1994).Google Scholar
6. See, e.g., Fullerton, E., Schuller, I. K., Vanderstraeten, H., and Bruynseraede, Y., Phys. Rev. B 45, 9292 (1992).Google Scholar
7. Stearns, D. G., J. Appl. Phys. 65, 491 (1989).Google Scholar
8. Salditt, T., Metzger, T. H. and Peisl, J., Phys. Rev. Lett. 73, 2228 (1994) and R. Paniago, H. Homma, P. C. Chow, S. C. Moss, Z. Barnea, S. S. P. Parkin and D. Cookson, Phys. Rev. B 52, R 17052 (1995).Google Scholar
9. Sinha, S. K., Sirota, E. B., Garoff, S. and Stanley, H. B., Phys. Rev. B 38, 2297 (1988) and G. Palasantzas and J. Krim, Phys. Rev. B 48, 2873 (1993).Google Scholar
10. Barabasi, A.-L. and Stanley, H. E., Fractal Concepts in Surface Growth (Cambridge Univ. Press, Cambridge, 1995) and references therein.Google Scholar
11. Noh, D. Y., Hwu, Y., Kim, H. K. and Hong, M., Phys. Rev. B 51, 4441 (1995).Google Scholar
12. Nahm, S., Salamanca-Riba, L., Jonker, B. T. and Prinz, G. A., in ”Layered Structures - Heteroepitaxy, Superlattices, Strain and Metastability”, Mat. Res. Soc. 160, (1989).Google Scholar