Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-25T12:52:51.440Z Has data issue: false hasContentIssue false

Influence of Nitrogen Impurities on Nickel and Platinum Silicide Formation

Published online by Cambridge University Press:  15 February 2011

K. T. Ho
Affiliation:
California Institute of Technology, Pasadena, CA 91125, (U.S.A.)
M.-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125, (U.S.A.)
L. WieluŃSki*
Affiliation:
California Institute of Technology, Pasadena, CA 91125, (U.S.A.)
*
Present address: Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
Get access

Abstract

In the present study we investigate the influence of nitrogen on the silicide formation of thin nickel and platinum films. Nitrogen is introduced by implantation either in the metal films or in the silicon substrates. We use the rare stable isotope 15N for the implantation and the nuclear reaction 15N(p,α)12C for the detection and profiling of the impurity. For nitrogen in nickel, we find that at 350 °C nitrogen is mobile. It accumulates at the bottom nickel interface and, for a dose exceeding about 0.5 × 1016 N atoms cm−2, forms a barrier to silicide formation. When nitrogen is initially in the silicon substrate, the nitrogen profile is broadened in the same proportion as the dilution of the silicon sublattice when forming the silicide. Similar experiments with platinum films showed partially different behaviors. All results are explained in terms of a model based on the moving species during the silicide formation and the chemical affinity of nitrogen to the metal and to silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mohammadi, F., Solid State Technol., 24 (1) (1981) 65.Google Scholar
2 Murarka, S. P., J. Vac. Sci. Technol., 17 (4) (1980) 775.Google Scholar
3 Tu, K. N. and Mayer, J. W., in Poate, J. M., Tu, K. N. and Mayer, J. W. (eds.), Thin Films— Interdiffusion and Reactions, Wiley, New York, 1978, p. 359.Google Scholar
4 Nicolet, M.-A. and Lau, S. S., in Larrabee, G. (ed.), Materials and Process Characterization, Vol. 6, VLSI Electronics: Microstructure Science, Academic Press, New York, Chap. 6, in the press.Google Scholar
5 Blattner, R. J., Evans, C. A. Jr., Lau, S. S., Mayer, J. W. and Ullrich, B. M., J. Electrochem. Soc., 122 (1975) 1732.Google Scholar
6 Kräutle, H., Nicolet, M.-A. and Mayer, J. W., J. Appl. Phys., 45 (1974) 3304.Google Scholar
7 Canali, C., Catellani, C., Prudenziati, M., Wadlin, W. H. and Evans, C. A., Jr., Appl. Phys. Lett., 31 (1977) 43.Google Scholar
8 Scott, D. M., Wieluński, L., von Seefeld, H. and Nicolet, M.-A., Nucl. Instrum. Methods, 182183 (1981) 661.Google Scholar
9 Picraux, S. T., Amsel, G. and Feldman, L. C., Proc. U.S.–Italy Semin. on Ion Beam Analysis, Catania, June 1974, Catania Working Data, Vol. I, p. 7-N.Google Scholar
10 Gibbons, J. F., Johnson, W. S. and Mylroe, S. W., Projected Range Statistics, Dowden, Hutchinson and Ross, Stroudsberg, PA, 1975.Google Scholar
11 Tu, K. N., Chu, W. K. and Mayer, J. W., Thin Solid Films, 25 (1975) 403.Google Scholar
12 Olowolafe, J. O., Nicolet, M.-A. and Mayer, J. W., Thin Solid Films, 38 (1976) 143.Google Scholar
13 Cheung, N., Lau, S. S., Nicolet, M.-A., Mayer, J. W. and Sheng, T. T., in Baglin, J. E. E. and Psoate, J. M. (eds.), Proc. Symp. on Thin Film Interfaces and Interactions, Vol. 80–2, Electrochemical Society, Princeton, NJ, 1980, p. 494.Google Scholar
14 Hansen, M. and Anderko, K., Constitution of Binary Alloys, McGraw-Hill, New York, 1958.Google Scholar
15 Dexter, R. J., Waterski, S. B. and Picraux, S. T., Appl. Phys. Lett., 23 (1973) 455.Google Scholar
16 Bourquet, P., Duport, J. M., Le Tiran, E., Auvray, P., Guivarc'h, A., Salvi, M., Pelous, G. and Henoc, P., J. Appl. Phys., 51 (1980) 6169.Google Scholar
17 Tsujide, T., Nojivi, M. and Kitagawa, H., J. Appl. Phys., 51 (1980) 1605.Google Scholar
18 Elliott, R. P., Constitution of Binary Alloys, Suppl. 1, McGraw-Hill, New York, 1965.Google Scholar
19 Grunthaner, P. J., Grunthaner, F. J., Scott, D. M., Nicolet, M.-A. and Mayer, J. W., J. Vac. Sci. Technol., 19 (1981) 641.Google Scholar
20 Muta, H. and Shinoda, D., J. Appl. Phys., 43 (1972) 2913.Google Scholar