Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T12:42:38.905Z Has data issue: false hasContentIssue false

Influence of the Chemical Structure on the Luminescence Properties of Organic Dye Molecules

Published online by Cambridge University Press:  21 March 2011

Egbert Zojer
Affiliation:
Institut fur Festkorperphysik, Technische Universitat Graz, Austria
Ulrich Rant
Affiliation:
Institut fur Festkorperphysik, Technische Universitat Graz, Austria
Petra Buchacher
Affiliation:
Institut fur Chemische Technologie Organischer Stoffe, Technische Universitat Graz, Austria Exotic Materials Institute, University of California, Los Angeles, USA
Ruth Müllner
Affiliation:
Institut fur Chemische Technologie Organischer Stoffe, Technische Universitat Graz, Austria
Franz Stelzer
Affiliation:
Institut fur Chemische Technologie Organischer Stoffe, Technische Universitat Graz, Austria
Fred Wudl
Affiliation:
Exotic Materials Institute, University of California, Los Angeles, USA
Niels Schulte
Affiliation:
Institut fur Org anische Chemie, Freie Universitat Berlin, Germany
Arnulf-Dieter Schlüter
Affiliation:
Institut fur Org anische Chemie, Freie Universitat Berlin, Germany
Günther Leising
Affiliation:
Institut fur Festkorperphysik, Technische Universitat Graz, Austria
Jean-Luc Brédas
Affiliation:
Service de Chimie des Materiaux Nouveaux, Université de Mons-Hainaut, Belgium and Department of Chemistry, The University of Arizona, Tucson, Arizona, USA
Get access

Abstract

In this contribution we compare experimental investigations (of photoluminescence, absorption and modulation spectroscopy) for a number of novel dye molecules to quantum-chemical simulations. The investigated materials contain phenylene-, phenylenevinylene-, naphthylene- and anthrylene units linked either by saturated or non saturated bonds. In the first part of the paper we give a short overview of the principal optical properties of the investigated molecules including a discussion of exciton localization effects. The latter can be accomplished by studying the geometry modifications in the excited state relative to the ground state. To do so, we couple the Austin Model 1 (AM1) approach to a multi-electron configuration interaction technique (MECI). The optical spectra are subsequently obtained from the Intermediate Neglect of Differential Overlap (INDO) Hamiltonian combined with a Single Configuration Interaction (SCI) approach. In the main section of this contribution we show the results of singlet exciton lifetime measurements performed with a modulation technique. An excellent agreement was found between the experimental data and quantum-chemical simulations for the transition dipole moments

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Buchacher, P., Helgeson, R., and Wudl, F., J. Org. Chem. 63, 9698 (1998)Google Scholar
2. Müllner, R., Zojer, E., Leising, G., Brédas, J. L. and Stelzer, Franz, to be submittedGoogle Scholar
3. Schlicke, B., PhD thesis, presented to the Freie Universität Berlin.Google Scholar
4. Grem, G., Leditzky, G., Ullrich, B. and Leising, G., Adv. Mater. 4, 36 (1992); Y. Yang, Q. Pei, and A.J. Heeger, J. Appl. Phys. 79, 934 (1996); M. Era, T. Tsutsui and S. Saito, Appl. Phys. Lett. 67, 2436 (1996)Google Scholar
5. Tessler, N., Adv. Mater. 11, 363 (1999) and References therein.Google Scholar
6. see e.g. Craig, D. P. and Thirunamachandran, T., Molecular Quantum Electrodynamics, (Academic Press, London, 1984), pp. 8997.Google Scholar
7. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. J. P., J. Am. Chem. Soc. 1985, 107, 3902.Google Scholar
8. compare e.g. Ampac 5.0 User's Manual, © 1994 Semichem, ShwaneeGoogle Scholar
9. Zojer, E., Rant, U., Buchacher, P., Wudl, F., Brédas, J. L., and Leising, G., to be published.Google Scholar
10. Pople, J. A., Beveridge, D. L., and Dobosh, P. A., J. Chem. Phys. 1967, 47, 2026.Google Scholar
11. Zerner, M. C., Loew, G. H., Kichner, R. F., and Mueller-Westerhoff, U. T., J. Am. Chem. Soc. 1980, 102, 589.Google Scholar
12. Mataga, N, and Nishimoto, K., Z. Phys. Chem. 1957, 13, 140.Google Scholar
13. Lakowicz, J.R., Principles of Fluorescence Spectroscopy, (Plenum, New York, 1986) pp. 7586.Google Scholar
14. the details of the experimental set-up are described in: Dicker, G., Diploma thesis, Technische Universität Graz (2000).Google Scholar