Published online by Cambridge University Press: 10 February 2011
Studies of the reaction path during annealing of Cu-In-Se thin films for solar cell absorbers have been limited up to now to ex-situ analyses of the phase composition by X-Ray Diffraction (XRD) after processing by a specific temperature-time program. As an indirect method, the application of ex-situ XRD is not sufficient for the determination of reaction temperatures and reaction times for setting up a general model of CIS-formation.
We show in this paper that the use of a calorimetric method (Thin Film Calorimetry, TFC) offers the advantage of a direct (in-situ) observation of thin film reactions. Special care is taken to use film thicknesses of practical interest for industrial application (1.5 – 3 μm). In a first step we show results of binary reactions in the Cu-In, In-Se and Cu-Se systems. Their knowledge is necessary for understanding the processes involved in the ternary CIS-layers. It turned out that thin Cu-In and Cu-Se films react already at room temperature and behave as predicted by the bulk equilibrium phase diagrams during heating. In-Se thin films show prominent exothermic reactions starting with the melting of In. The first phase to be formed is generally In2Se which is then converted to more Se-rich compounds. In ternary Cu-In-Se films (Cu/In = 1.00) we observe transitions of the Cu-Se-system which can be attributed to the decomposition of CuSe2 and CuSe. Consequences for the model of improved CIS-growth by a Cu-Se flux agent are discussed.