Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T10:10:39.919Z Has data issue: false hasContentIssue false

In-Situ Tem Analysis of Nanometre-Sized Oxide Precipitates in a Metal Matrix

Published online by Cambridge University Press:  21 March 2011

Bart J. Kooi
Affiliation:
Laboratory of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Jeff Th.M. De Hosson
Affiliation:
Laboratory of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands. e-mail: hossonj@phys.rug.nl
Get access

Abstract

The objective of the present work is the in-situ study of the transformation of small oxide precipitates in a metal matrix by conventional and high-resolution transmission electron microscopy (HRTEM). As an example the reduction of Mn3O4 into MnO for nano-sized oxide precipitates in a silver matrix was studied in detail. A convenient method for monitoring the reduction process is shown for a large number of precipitates simultaneously. It is based on two-beam dark-field images showing distinct Moiré patterns for the MnO and the various types of Mn3O4 precipitates embedded within an Ag matrix. A controlling factor of the transformation kinetics appeared to be the rate in which the system can relax the strains due to the accompanying volume reduction of the precipitates. Other interesting aspects of the Mn3O4 to MnO transformation scrutinized and explained were the shape change of the precipitates upon reduction and the fact that mixed Mn3O4/MnO precipitates were only detected within a small temperature/time interval. Ostwald ripening of the MnO precipitates was observed as well.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dahmen, U., Xiao, S.Q., Paciornik, S., Johnson, E., Johansen, A., Phys. Rev. Lett. 78, 471 (1997).Google Scholar
2. Felde, A. vom, Fink, J., Müller-Heinzerling, Th., Pfüger, J., Scheerer, B., Linker, G., Kaletta, D., Phys. Rev. Lett. 53, 922 (1984).Google Scholar
3. Templier, C., Jaouen, C., Reviere, J.P., Delafond, J., Grilhe, J., C.R. Acad. Sci. Ser.2 299, 613 (1984).Google Scholar
4. Porterling, D. A., Easterling, K.E., Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, New York, 1980.Google Scholar
5. Takagi, M., J. Phys. Soc. Jpn. 9, 359 (1954).Google Scholar
6. Borel, J., Surf. Sci. 106, 1 (1981).Google Scholar
7. Goldstein, A.N., Echer, C.M., Alivisatos, A.P., Science 256 (1992), 1425.Google Scholar
8. David, T. Ben, Lereah, Y., Deutscher, G., Kofman, R., Cheyssac, P., Phil. Mag. A 71, 11351143 (1995).Google Scholar
9. Moore, K.I., Chattopadhyay, K., Cantor, B., Proc. Roy. Soc. Lond. A 414, 499 (1987).Google Scholar
10. Saka, H., Nishikawa, Y., Imura, T., Phil. Mag. A 57, 895 (1988).Google Scholar
11. Grabaek, L., Bohr, J., Andersen, H.H., Johansen, A., Johnson, E., Sarholt-Kristensen, L., Robinson, I.K., Phys. Rev. B. 45, 26282637 (1992).Google Scholar
12. Andersen, H.H., Johnson, E., Nucl. Instr. Meth. B 106, 480 (1995)Google Scholar
13. Goswami, R., Chattopadhyay, K., Ryder, P.L., Acta. Mater. 46, 4257 (1998).Google Scholar
14. Hagege, S., Interface Sci. 7, 85 (1999).Google Scholar
15. Rühle, M., Kraus, B., Strecker, A., Waidelich, D., p.256 and Schonlein, L. H., Rühle, M., Heuer, A.H., p.275, Science and Technology of Zirconia II, Advances in Ceramics Vol.12, Eds. Clausen, N., Rühle, M., Heuer, A.H., The American Ceramic Society, Columbus OH, p.256, 1984.Google Scholar
16. Lee, R.R., Heuer, A.H., J. Amer. Ceram. Soc. 71, 701 (1988).Google Scholar
17. Rühle, M., Ma, L.T., Wunderlich, W., Evans, A.G., Physica B 150, 86 (1988).Google Scholar
18. McCartney, M.R., Rühle, M., Acta. Metall. 37, 1859 (1989).Google Scholar
19. Lin, G.Y., Lei, T.C., Zhou, Y., Ceram. Intern. 24, 307 (1998).Google Scholar
20. Schofield, M.A., Aita, C.R., Rice, P.M., Gajdardziska-Josifovska, M., Thin Solid Films 326, 117 (1998).Google Scholar
21. Evans, A.G., Cannon, R.M., Acta. Metall. 34, 761 (1986).Google Scholar
22. Green, D.J., Hannink, R.H.J., Swain, M.V., Transformation Toughening Ceramics, CRC, Boca Raton FL, 1989.Google Scholar
23. Rühle, M., Claussen, N., Heuer, A.H., J. Amer. Ceram. Soc. 69, 195 (1986)Google Scholar
24. Rühle, M., Evans, A.G., McMeeking, R.M., Hutchinson, J.W., Acta. Metall. 35, 2701 (1987).Google Scholar
25. Tendeloo, G. van, Landuyt, J. van, Amelinckx, S., Phys. Stat. Solid. (a) 33, 723 (1976).Google Scholar
26. Yamamoto, N., Tsuda, K., Yagi, K., J. Phys. Soc. Jpn. 57 (1988), 2559.Google Scholar
27. Smith, D.J., Nato ASI Ser. B 191, 43 (1988).Google Scholar
28. Kooi, B.J., Groen, H.B., Hosson, J.Th.M. De, Acta Mater. 45, 3587 (1997).Google Scholar
29. Kooi, B.J., Groen, H.B., Hosson, J.Th.M. De, Acta Mater. 46, 111 (1998).Google Scholar
30. Kooi, B.J., Hosson, J.Th.M. De, Acta Mater. 46, 1909 (1998).Google Scholar
31. Kooi, B.J., Hosson, J.Th.M. De, Acta Mater. 48, in press (2000).Google Scholar
32. Kooi, B.J., Westers, A.R., Vreeling, J.A., Agterveld, D.T.L. van, Hosson, J.Th.M. De, Mat. Sci. Forum 294–296, 255 (1999).Google Scholar
33. Hosson, J.Th.M. De, Groen, H.B., Kooi, B. J., Vitek, V., Acta Mater. 47, 4077 (1999).Google Scholar
34. Groen, H.B., Kooi, B.J., Vellinga, W.P., Hosson, J.Th.M. De, Phil Mag. A 79, 2083.Google Scholar
35. Wyckoff, R.W.G., Crystal Structures (2nd ed.), Interscience Publishers, New York, 1963.Google Scholar
36. Diffusion Data 3, p.12 (1969).Google Scholar
37. Meijering, J.L., Adv. Mater. Res. 5 (Ed. Herman, H.), p.1 (1971).Google Scholar
38. Diffusion and Defect Data 21, p.1 (1980).Google Scholar
39. Mrowec, S., Defects and Diffusion in Solids, an Introduction, Materials Science Monographs 5, Elsevier Scientific Publishing Company, Amsterdam, 1980.Google Scholar
40. Backhaus-Ricoult, M., Laurent, S., Mat. Sci. Forum 294–296, 173 (1999).Google Scholar
41. Mader, W., Z. Metallkd. 83, 7 (1992).Google Scholar
42. Jang, H., Seidman, D.N., Merkle, K.L., Interface Sci. 1, 61 (1993).Google Scholar
43. Muller, D.A., Shaskov, D.A., Benedek, R., Yang, L.H., Silcox, J., Seidman, D.N., Phys. Rev. Lett. 80, 4741 (1998).Google Scholar
44. Shashkov, D.A., Muller, D.A., Seidman, D.N., Acta. Mater. 47, 39533963 (1999).Google Scholar
45. Laurent, S., Imhoff, D., Colliex, C., Hÿtch, M.J., Devaud, J., Hagege, S., Ricoult, M. Backhaus-, Mat. Sci. Forum 294–296, 325 (1999).Google Scholar
46. Dahmen, U., Acta Metall. 30, 63 (1982).Google Scholar
47. Dahmen, U., Westmacott, K.H., Acta Metall. 34, 475 (1986).Google Scholar