Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-25T11:11:24.324Z Has data issue: false hasContentIssue false

Interaction between Recombination Enhanced Dislocation Glide Process Activated Basal Stacking Faults and Threading Dislocations in 4H-Silicon Carbide Epitaxial Layers

Published online by Cambridge University Press:  01 February 2011

Yi Chen
Affiliation:
yichen1@ic.sunysb.edu, Stony Brook University, Materials Science and Engineering, Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, 11794-2275, United States
Michael Dudley
Affiliation:
mdudley@notes.cc.sunysb.edu, Stony Brook University, Materials Science and Engineering, Stony Brook, NY, 11794-2275, United States
Kendrick X Liu
Affiliation:
kendrick.liu@nrl.navy.mil, Naval Research Laboratory, Washington, DC, 20375-5320, United States
Robert E Stahlbush
Affiliation:
stahlbush@bloch.nrl.navy.mil, Naval Research Laboratory, Washington, DC, 20375-5320, United States
Get access

Abstract

Electron-hole recombination enhanced glide of Shockley partial dislocations bounding expanding stacking faults and their interactions with threading dislocations in 4H silicon carbide epitaxial layers have been studied using synchrotron white beam X-ray topography and in situ electroluminescence. The mobile silicon-core Shockley partial dislocations bounding the stacking faults are able to cut through threading edge dislocations leaving no trailing dislocation segments in their wake. However, when the Shockley partial dislocations interact with threading screw dislocations, trailing 30o partial dislocation dipoles are initially deposited in their wake due to the pinning effect of the threading screw dislocations. These dipoles spontaneously snap into their screw orientation, regardless the normally immobile carbon-core Shockley partial dislocation components in the dipoles. They subsequently cross slip and annihilate, leaving a prismatic stacking fault in (2-1-10) plane with the displacement vector 1/3[01-10].

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Chen, H., Raghothamachar, B., Vetter, W., Dudley, M., Wang, Y., and Skromme, B.: Mater. Res. Soc. Symp. Proc. 911, 0911–B05 (2006)Google Scholar
2 Lendenmann, H., Dahlquist, F., Johansson, N., Soderholm, R., Nilsson, P. A., Bergman, J. P., and Skytt, P., Mater. Sci. Forum 353-356, 727 (2001)Google Scholar
3 Liu, K. X., Stahlbush, R. E., Hobart, K. B., and Sumakeris, J. J., Mater. Sci. Forum 527-529, 387 (2006)Google Scholar
4 Stahlbush, R. E., Fatemi, M., Fedison, J. B., Arthur, S. D., Rowland, L. B., and Wang, S., J. Elec. Mater. 31, 370 (2002)Google Scholar
5 Chen, Y., Dhanaraj, G., Dudley, M., Zhang, H., Ma, R., Shishkin, Y., and Saddow, S. E., Mater. Res. Soc. Symp. Proc. 911, 0911–B09 (2006)Google Scholar
6 Zhang, M., Hobgood, H. M., and Pirouz, P., Mater. Sci. Forum 457-460, 371 (2004)Google Scholar
7 Chen, Y., Dhanaraj, G., and Dudley, M., Mater. Sci. Forum 2007 (in press)Google Scholar
8 Skowronski, M., Liu, J. Q., Vetter, W. M., Dudley, M., Hallin, C., and Lendenmann, H., J. Appl. Phys. 92, 4699 (2002)Google Scholar
9 Pirouz, P., Demenet, J. L., and Hong, M. H., Phil. Mag. A 81, 1207 (2001)Google Scholar
10 Pirouz, P., Zhang, M., Galeckas, A., and Linnros, J., Mater. Sci. Forum 815, J6.1.1 (2004)Google Scholar
11 Rasmussen, T., Vegge, T., Leffers, T., Pedersen, O. B., and Jacobsen, K. W., Phil. Mag. A 80, 1273(2000)Google Scholar
12 Essmann, U. and Mughrabi, H., Phil. Mag. A 40, 731 (1979)Google Scholar
13 Chen, Y., Dudley, M., Liu, K. X., and Stahlbush, R. E., Appl. Phys. Lett. 90, 171930 (2007)Google Scholar