Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T10:44:38.982Z Has data issue: false hasContentIssue false

Investigation of Anisotropy Effects and Interlayer Exchange Coupling by Locally Resolved Photothermally Modulated Ferromagnetic Resonance

Published online by Cambridge University Press:  15 February 2011

R. Meckenstock
Affiliation:
Institut für Experimentalphysik, Ag. Festkörperspektroskopie, Ruhr-Universität-Bochum, 44780 Bochum, Germany
J. Pelzl
Affiliation:
Institut für Experimentalphysik, Ag. Festkörperspektroskopie, Ruhr-Universität-Bochum, 44780 Bochum, Germany
Z. Frait
Affiliation:
Institute of Physics, Prague, Czech Republic
Get access

Abstract

The photothermally modulated ferromagnetic resonance (PM-FMR) has been successfully applied to investigate the position dependence of FMR properties of wedged Fe-samples. The temperature dependence of the surface contribution to the anisotropy could be separated from the demagnetizing field with high accuracy. The oscillating first order interlayer exchange coupling and the anisotropy fields of the Fe-films of a Fe/Cr-wedge/Fe-sample (3.0/0.7–2.8/2.0 nm) were deduced from PM-FMR spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heinrich, B. and Cochran, J. F., Advances in Physics 42, 523 (1993)Google Scholar
2. von Geisau, O., Pelzl, J., Photothermal Characterization of Microwave Magnetic Excitations.in: High Frequency Processes in Magnetic Materials, edited by Srinivasan, G. and Slavin, A. N. (World Scientific Pub. Co., River Edge NJ, 1995)Google Scholar
3. Meckenstock, R., von Geisau, O., Wolf, J. A., Pelzl, J., J. Appl. Phys 77, 6424 (1995)Google Scholar
4. Meckenstock, R., Harms, K., von Geisau, O., Pelzl, J., J. Appl. Phys 79 (11), 8607 (1996)Google Scholar
5. Meckenstock, R., Pelzl, J., to appear in J. Appl. Phys 81 (8), April 15. (1997)Google Scholar
6. Poole, C., Electron Spin Resonance, (MacGraw Hill, New York 1967)Google Scholar
7. Meckenstock, R., Harms, K., Pelzl, J., supplement to Vol. 6 of Prog, in Nat. Science, p. 247 (Taylor and Francis, London and Washington 1996)Google Scholar
8. Wolf, J. A., Leng, Q., Schreiber, R., Grünberg, P., and Zinn, W., J. Magn. Magn. Mat. 121, 253 (1993)Google Scholar
9. Grünberg, P., Füss, A., Leng, Q., Schreiber, R., and Wolf, J.A., Proc. of work shop on Magnetism and Structure in Systems of Reduced Dimension, Cargese 1992, p. 87 (NATO ASI series B 1993)Google Scholar
10. Skrotskii, G. V. and Kurbatov, L. V., in Ferromagnetic Resonance, edited by Vonsovskii, S. V., p. 1277 (Pergamon Press, Oxford, 1966).Google Scholar
11. Layadi, A., Artman, J.O., J. Magn. Magn. Mat 92, 143 (1990)Google Scholar
12. Kurowski, D. Ruhr-Universität Bochum (private communication)Google Scholar
13. Meckenstock, R., von Geisau, O., Pelzl, J., IEEE Transaction on Magnetics 31 (6), 3847 (1995)Google Scholar
14. Grünberg, P., Demokritov, S., Fuss, A., Vohl, M., Wolf, J.A., J. Appl. Phys. 69, 4789 (1991)Google Scholar
15. Grünberg, P. KFA-Jülich (private communication)Google Scholar
16. Meckenstock, R., PhD. theses, Ruhr-Universität-Bochum (1997)Google Scholar