Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T02:29:39.288Z Has data issue: false hasContentIssue false

Investigation of Epitaxial GaN Films by Conductive Atomic Force Microscopy

Published online by Cambridge University Press:  01 February 2011

S. Dogan
Affiliation:
Virginia Commonwealth University, Department of Electrical Engineering and Physics Department, Richmond, Virginia 23284 Atatürk University, Faculty of Science and Art, Department of Physics, 25240 Erzurum, Turkey
J. Spradlin
Affiliation:
Virginia Commonwealth University, Department of Electrical Engineering and Physics Department, Richmond, Virginia 23284
J. Xie
Affiliation:
Virginia Commonwealth University, Department of Electrical Engineering and Physics Department, Richmond, Virginia 23284
A. A. Pomarico
Affiliation:
Virginia Commonwealth University, Department of Electrical Engineering and Physics Department, Richmond, Virginia 23284 NNL National Nanotechnology Laboratory of INFM, Universitàdi Lecce, Via per Arnesano, I-73100 Lecce, Italy
R. Cingolani
Affiliation:
Virginia Commonwealth University, Department of Electrical Engineering and Physics Department, Richmond, Virginia 23284 NNL National Nanotechnology Laboratory of INFM, Universitàdi Lecce, Via per Arnesano, I-73100 Lecce, Italy
D. Huang
Affiliation:
Virginia Commonwealth University, Department of Electrical Engineering and Physics Department, Richmond, Virginia 23284 Physics Department, Fudan University, Shanghai 200433, China
J. Dickinson
Affiliation:
Virginia Commonwealth University, Department of Electrical Engineering and Physics Department, Richmond, Virginia 23284
A. A. Baski
Affiliation:
Virginia Commonwealth University, Department of Electrical Engineering and Physics Department, Richmond, Virginia 23284
H. Morkoç
Affiliation:
Virginia Commonwealth University, Department of Electrical Engineering and Physics Department, Richmond, Virginia 23284
R. Molnar
Affiliation:
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts 02173
Get access

Abstract

The current conduction in GaN is very topical and is the topic of a vast amount of research. By simultaneously mapping the topography and the current distribution, conductive atomic force microscopy (C-AFM) has the potential to establish a correlation between topological features and localized current paths. In this study, this technique was applied to image the conduction properties of as-grown and post-growth chemically etched samples GaN epitaxial layers on a microscopic scale. Our results show that prismatic planes have a significantly higher conductivity than the surrounding areas of the sample surface. A large and stable local current was mainly observed from the walls of the etched pits, under forward and reverse bias of the metallized AFM tip/semiconductor junction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Morkoç, H., Nitride Semiconductors and Devices (Springer, Heidelberg, 1999).Google Scholar
2 Strite, S. T. and Morkoç, H., J. Vac. Sci.. Technol. B 10, 1237 (1992).Google Scholar
3 Ambacher, O., J. Phys. D 31, 2653 (1998).Google Scholar
4 Pearton, S. J., Zolper, J. C., Shu, R. J., and Ren, F., J. Appl. Phys. 86, 1 (1999).Google Scholar
5 Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer, Berlin, 1997).Google Scholar
6 Morkoç, H, Carlo, Aldo Di and Cingolani, R., Solid State Electronics, Volume 46, Issue 2 pp. 157202, (2002)Google Scholar
7 Levinshtein, M. E., Rumyantsev, S. L., Gaska, R., Wang, J. W., and Shur, M. S., Appl. Phys. Lett. 73, 1089 (1998).Google Scholar
8 Hsu, J. W. P., Manfra, M. J., Lang, D. V., Richter, S., Chu, S. N. G., Sergent, A. M., Kleiman, R. N., Pfeiffer, L. N., and Molnar, R. J., Appl. Phys. Lett. 78, 1685 (2001).Google Scholar
9 Hsu, J. W. P., Manfra, M. J., Molnar, R. J., Heying, B., and Speck, J. S., Appl. Phys. Lett 81(1), 79, (2002).Google Scholar
10 Pomarico, A. A., Huang, D., Dickinson, J., Baski, A. A., Cingolani, R., Morkoç, H. and Molnar, R., Appl. Phys. Lett, Vol. 82, pp. 1890 (2003).Google Scholar
11 Miller, E. J., Schaadt, D. M., Yu, E. T., Poblenz, C., Elsass, C., and Speck, J. S., J. Appl. Phys. 91, 9821 (2002).Google Scholar
12 Simpkins, B. S., Yu, E. T., Waltereit, P., and Speck, J. S., J. Appl. Phys. 94, 1448 (2003).Google Scholar
13 Kozawa, T., Kaxhi, T., Ohwaki, T., Taga, Y., Koide, N., and Koike, M., J. Electrochem. Soc. 143, L17 (1996).Google Scholar
14 Hong, S. K., Kim, B. J., Park, H. S., Park, Y., Yoon, S. Y., and Kim, T. I., J. Cryst. Growth 191, 275 (1998).Google Scholar
15 Jones, K. M., Visconti, P., Yun, F., Reshchikov, M. A., Baski, A. A., and Morkoç, H. Fall MRS Meeting, (2000).Google Scholar
16 Arslan, I., Ogut, S., Nellist, P. D. and Browning, N. D., Proc. of the 4th Symposium on Non-Stoichiometric III-V Compounds, Vol. 27, 145, (2002).Google Scholar
17 Arslan, I. and Browning, N. D., private communication, for details of the method, Arslan, I. and Browning, N. D., Phys. Rev. B 65, 075310 (2002).Google Scholar
18 Fang, Z-Q., Look, D.C., Visconti, P., Wang, D-F., Lu, C-Z., Yun, F., Morkoç, H., Park, S.S., and Lee, K.Y., Appl. Phys. Lett, 78, 2178, (2001).Google Scholar