Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-01T18:26:34.447Z Has data issue: false hasContentIssue false

Investigation of Titanium in Metamict Nb-Ta-Ti Oxides Using the Extended X-Ray Absorption Fine Structure Technique

Published online by Cambridge University Press:  15 February 2011

R. B. Greegor
Affiliation:
The Boeing Company, Seattle, Washington 98124
F. W. Lytle
Affiliation:
The Boeing Company, Seattle, Washington 98124
R. C. Ewing
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, NM 87131
R. F. Haaker
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, NM 87131
Get access

Extract

Recent proposals have suggested that radioactive wastes can be isolated 1 as dilute solid solutions in a crystalline, titanate assemblage. One titanate assemblage, SYNROC, consists of zirconolite (CaZrTi207), perovskite (CaTiO3) and "hollandite" (BaAl2Ti6016) with additional accessory phases. There are two major problems in the evaluation of the long term stability of any crystalline wasteform such as SYNROC: 1) it is difficult to assess the long term stability of materials from short term laboratory experiments that are not necessarily valid simulations of complex geochemical processes, and 2)the corresponding titanate minerals are uncommon, making it difficult to study long term alteration and radiation effects on a significant number of specimens from different localities and geologic environments. There has even been considerable controversy concerning the stability of the reasonably common and simple phase, perovskite (CaTiO3)

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ringwood, A. E. Kesson, S. E. Ware, N. G. Hibberson, W. and Major, A (1979) Nature 278, 219.10.1038/278219a0CrossRefGoogle Scholar
2. Nesbitt, H. Bancroft, G. Fyie, W. Karkhanis, S. Nishijima, A. and Shin, S. (1981) Nature 289, 358.10.1038/289358a0CrossRefGoogle Scholar
3. Ewing, R. C., Can. Min. (1976) 14, 111.Google Scholar
4. Haaker, R. F. and Ewing, R. C. (1979) in Ceramics in Nuclear Waste Management. Chickalla T. and Mendel J., ed 305.Google Scholar
5. Ewing, R. C. and Haaker, R. F. (1980) Chem. Waste Mgt. 1, 51.10.1016/0191-815X(80)90028-5CrossRefGoogle Scholar
6. Headley, T. Ewing, R. C. and Haaker, R. F. (1981) Nature 293, 449.10.1038/293449a0CrossRefGoogle Scholar
7. Ewing, R. C. Haaker, R. F. Headley, T. J. and Hlava, P. (1981) Proc. Fourth Int. Sym. on the Sci. Basis for Nucl. Waste Mgt. (in press).Google Scholar
8. Winick, H. and Bienenstock, A. (1978) Ann. Rev. Nucl. Part. Sci. 28, 33.10.1146/annurev.ns.28.120178.000341CrossRefGoogle Scholar
9. Stern, E. A. and Heald, S. (1979) Rev. Sci. Instr. 50, 1579.10.1063/1.1135763CrossRefGoogle Scholar
10. Kirby, J. A. (1978), “Manual for Data Collection Program,” Univ. Calif. Berkeley.Google Scholar
11. Sayers, D. Stern, E. and Lytle, F. (1971) Phys. Rev. Lett. 27, 1204.10.1103/PhysRevLett.27.1204CrossRefGoogle Scholar
12. Stern, E. Sayers, D. and Lytle, F. (1975) Phys. Rev. 11, 4836.10.1103/PhysRevB.11.4836CrossRefGoogle Scholar
13. Lee, P. and Pendry, J. (1975) Phys. Rev. 11, 2795.10.1103/PhysRevB.11.2795CrossRefGoogle Scholar
14. Lee., P. and Beni, G. (1977) Phys. Rev. 15, 2862.10.1103/PhysRevB.15.2862CrossRefGoogle Scholar
15. Greegor, R. B. and Lytle, F. W. (1979) Phy. Rev. B. 20, 4902.10.1103/PhysRevB.20.4902CrossRefGoogle Scholar
16. Sandstrom, D. R. Lytle, F. W. Wei, P. S. P. Greegor, R. B. Wong, J. and Schultz, P. (1980) J. Non-Crys. Sol. 41, 201.10.1016/0022-3093(80)90165-9CrossRefGoogle Scholar
17. Alexsandrov, V. B. (1961) Akad. Nauk SSSR Doklady, 149, 181.Google Scholar
18. Alexsandrov, V. B. (1960) Akad. Nauk SSSR Doklady, 132, 669.Google Scholar