Published online by Cambridge University Press: 22 February 2011
Ion implantation in silicone rubber has been carried out in order to study its effects on structure and chemical states. H+-, He+-, C+-, N+-, N2+-, O+-, O2+-, Ne+-, Na+-, Ar+-, and K+- ion implantations were performed at an energy of 150 keV with doses ranging from 1×1013 to 1×1017 ions/cm2 at room temperature. The depth profiles of the ion implanted elements and host elements were investigated by means of XPS and SIMS. The chemical properties were studied by FT-IR-ATR and Raman spectroscopy. XPS results indicated that most of the implanted elements showed a Gaussian like distribution in the silicone polymer matrix, but implanted He+, Ne+, and Ar+ could not be detected. Results of FT-IR-ATR showed that ion implantation broke CH3 and Si-O bonds to form new radicals such as SiOH, >C=0, CH2 and SiHx and the effects varied depending on the implanted ion species. The Raman spectroscopy results showed that ion implanted silicone contained both sp3 and sp2 bonded carbon.