Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T09:36:00.530Z Has data issue: false hasContentIssue false

Ion Beam Synthesis of Luminescent SI and GE Nanocrystals in a Silicon Dioxide Matrix

Published online by Cambridge University Press:  22 February 2011

H.A. Atwater
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125.
K.V. Shcheglov
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125.
S.S. Wong
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125.
K.J. Vahala
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125.
R.C. Flagan
Affiliation:
Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA 91125.
M.L. Brongersma
Affiliation:
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, Netherlands.
A. Polman
Affiliation:
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, Netherlands.
Get access

Abstract

Ion beam synthesis of Si and Ge nanocrystals in an SiO2 matrix is performed by precipitation from supersaturated solid solutions created by ion implantation. Films of SiO2 on (100) Si substrates are implanted with Si and Ge at doses 1 × 1016/cm2 - 5 × 1016/cm2. Implanted samples are subsequently annealed to induce precipitation of Si and Ge nanocrystals. Raman spectroscopy and high-resolution transmission electron microscopy indicate a correlation between visible room-temperature photoluminescence and the formation of diamond cubic nanocrystals approximately 2–5 nm in diameter in annealed samples. As-implanted but unannealed samples do not exhibit luminescence. Rutherford backscattering spectra indicate a steepening of implanted Ge profiles upon annealing. Photoluminescence spectra are correlated with annealing temperatures, and compared with theoretical predictions for various possible luminescence mechanisms, such as radiative recombination of quantum-confined excitons, as well as possible localized state luminescence related to structural defects in SiO2. Potential optoelectronic device applications are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L.T., Appl. Phys. Lett., 57 1046 (1990).Google Scholar
2 Delley, B. and Steigmeier, E.F., Phys. Rev., B47, 1397 (1993).Google Scholar
3 Takagahara, T. and Takeda, K., Phys. Rev., B47, 15578 (1992).Google Scholar
4 Kimura, H., Imanaga, S., Hayafuji, Y. and Adachi, H., J. Phys. Soc. Jpn., 62, 2663 (1993).Google Scholar
5 Matsumoto, N., Takeda, K., Teramae, H. and Fujino, M., Advances in Chemistry, 224, ACS Books, (1989), p. 515.Google Scholar
6 DiMaria, D.J., Kirtley, J.R., Pakulis, E.J., Dong, D.W., Kuan, T.S., Pesavento, F.L., Theis, T.N., Cutro, J.A., and Brorson, S.D., J. Appl. Phys. 56, 401 (1984).Google Scholar
7 Maeda, Y., Tsukamoto, N., Yazawa, Y., Kanemitsu, Y., and Masumoto, Y., Appl. Phys. Lett. 59, 3168 (1991).Google Scholar
8 Kanemitsu, Y., Uto, H., Masumoto, Y. and Maeda, Y., Appl. Phys. Lett. 61 2187 (1992).Google Scholar
9 Hayashi, S., Kanzawa, Y., Kataoka, M., Nagareda, T. and Yamamoto, K., Z. Phys. D26, 144 (1993).Google Scholar
10 Hayashi, S., Fijii, M.. Yamamoto, K., Jpn. J. Appl. Phys. 28, 1464 (1989)Google Scholar
11 Hayashi, S., Nagareda, T., Kanzawa, Y., and Yamamoto, K., Jpn. J. Appl. Phys. 32, 3840 (1993).Google Scholar
12 Yoffe, A.D., Advances in Physics, 42, 173 (1993).Google Scholar
13 Shimizu-Iwayama, T., Ohshima, M., Niimi, T., Nakao, S., Saitoh, K., Fujita, T., and Itoh, N., J. Phys. Cond. Matter 5, L375 (1993).Google Scholar
14 Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon, New York, 1985.Google Scholar
15 Shcheglov, K.V., Wong, S.S., Vahala, K.J., Flagan, R.C., to be published in Appl. Phys. Lett., 1994.Google Scholar
16 Song, K.S. and Williams, R.T., Self-Trapped Excitons, Springer Verlag, New York, 1993, Ch. 7, pp. 270299.Google Scholar
17 Venkatasubramanian, R., Malta, D.P., Timmons, M.L. and Hutchby, J.A., Appl. Phys. Lett., 59, 1603 (1993).Google Scholar
18 Kanemitsu, , Suzuki, K., Uto, H., Masumoto, Y., Matsumoto, T., Kyushin, S., Higuchi, K., and Matsumoto, H.., Appl. Phys. Lett., 61 2446 (1992); Y. Kanemitsu, K. Suzuki, H. Uto, Y. Masumoto, K. Higuchi, S. Kyushin and H. Matsumoto, Jpn. J. Appl. Phys. 32, 408 (1993).Google Scholar