Hostname: page-component-68945f75b7-72kh6 Total loading time: 0 Render date: 2024-08-06T08:49:56.515Z Has data issue: false hasContentIssue false

Ion Implantation and Annealing Effects in Silicon Carbide

Published online by Cambridge University Press:  03 September 2012

V. Heera
Affiliation:
Research Center Rossendorf Inc., D-01314 Dresden, POB 510119, Germany, heera@fz-rossendorf. De
W. Skorupa
Affiliation:
Research Center Rossendorf Inc., D-01314 Dresden, POB 510119, Germany, heera@fz-rossendorf. De
Get access

Abstract

SiC is a promising semiconductor material for high-power/high-frequency and hightemperature electronic applications. For selective doping of SiC ion implantation is the only possible process. However, relatively little is known about ion implantation and annealing effects in SiC. Compared to ion implantation into Si there is a number of specific features which have to be considered for successful ion beam processing of SiC. A brief review is given on some aspects of ion implantation in and annealing of SiC. The ion implantation effects in SiC are discussed in direct comparison to Si. The following issues are addressed: ion ranges, radiation damage, amorphization, high temperature implantation, ion beim induced crystallization and surface erosion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Harris, G.L., Properties of Silicon Carbide, (INSPEC, London, 1995)Google Scholar
2. Shenai, K., Scott, R.S. and Baliga, B.J., IEEE Trans.Elec.Dev. 36, 1811 (1989)Google Scholar
3. Ruff, M., Mitlelmer, H. and Helbig, R., IEEE Trans.Eiec.Dev. 41, 1040 (1994)Google Scholar
4. Pensl, G. and Troffer, Tb., Solid State Phenomena 47–48, 115 (1996)Google Scholar
5. Casady, J.B. and Johnson, R.W., Solid-State Electronics 39, 1409 (1996)Google Scholar
6. O'Connor, J.R., Smiltens, J., Silicon Carbide, A High-Temperature Semiconductor, (Pergamon, NY,1960)Google Scholar
7. Davies, R.F., Kelner, G., Shur, M., Palmour, J.W. and Edmond, J.A., Proc. IEEE 79, 677 (1991)Google Scholar
8. Powell, J.A., Neudeck, P.G., Matus, L.G. and Petit, J.B., Mat.Res.Soc.Symp.Proc. 242, 495 (1992)Google Scholar
9. Neudeck, P.G., J.Electr.Mater. 24, 283 (1995)Google Scholar
10. Wesch, W., Nucl.Instr.Meth. B 116, 305 (1996)Google Scholar
11. McHargue, C.J. and Williams, J.M., Nucl.Instr.Meth B80/81, 889 (1993)Google Scholar
12. Skorupa, W., Heera, V., Pacaud, Y. and Weishart, H., Nucl.Instr.Meth. B 120, 114 (1996)Google Scholar
13. Verma, A. and Krishna, P., Polymorphism and Polypnism in Crystals, (Wiley, New York, 1966)Google Scholar
14. Pirouz, P. and Yang, J.W., Ultramicroscopy 51, 189 (1993)Google Scholar
15. Yoo, W.S. and Matsunami, H., Jpn.J.Appl.Phys. 30, 545 (1991)Google Scholar
16. Pezoldt, J., Kalnin, A., Moskwina, D.R., Savelyev, W.D., Nucl.Instr.Meth. B80/81, 943 (1993)1Google Scholar
17. Pensl, G. and Choyke, W.J., Physica B 185, 264 (1993)Google Scholar
18. Chang, K.J. and Cohen, M.L., Phys.Rev. B 35, 8196 (1987)Google Scholar
19. Ziegler, J.F., Biersack, J.P., Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, N.Y., 1985)Google Scholar
20. Fōhl, A., Emrick, R.M. and Carstanjen, H.D., Nucl.Instr.Meth. B 65, 335 (1992)Google Scholar
21. Rao, M.V., Griffiths, P., Holland, O.W., Kelner, G., and Freitas, J.A., Simons, D.S., Chi, P.H., Ghezzo, M., J.Appl.Phys. 77, 2479 (1995)Google Scholar
22. Toda, T., Yagi, K., Koga, K., Yoshida, K. and Niina, T., in Nakashima, S., Matsunami, H., Yoshida, S. and Harima, H. (eds.) Proc. 6th ICSCRM 1995, IOPC series 142, (IOP Publishing 1996) p. 545 Google Scholar
23. Ahmed, S., Barbero, C.J. and Sigmon, T.W., J.Appl.Phys. 77, 6194 (1995)Google Scholar
24. Gardner, J., Rao, M.V., Holland, O.W., Kelner, G., Simons, D.S., Chi, P.H., Andrews, J.M., Kretchmer, J. and Ghezzo, M., J.Elec.Mater. 25, 885 (1996)Google Scholar
25. Lindhard, J., Danske, Kgl. Selskab., Videnskab., Mat.-Fys. Medd 34, No. 14 (1965)Google Scholar
26. Yaguchi, S., Kimoto, T., Ohyama, N. and Matsunami, H., Jpn.J.Appl.Phys. 34, 3036 (1995)Google Scholar
27. Behar, M., Fichtner, P.F.P., Grande, P.L., Zawislak, F.C., Mater.Sci.Eng. R15, 1 (1995)Google Scholar
28. Lossy, R., Reichert, W., Obermeier, E. and Stoemenos, J., in Nakashima, S., Matsunami, H., Yoshida, S. and Harima, H. (eds.), Proc. 6th ICSCRM 1995, IOPC series 142, (IOP Publishing 1996) 553 Google Scholar
29. Nakata, T., Mizutani, Y., Mikoda, M., Watanabe, M., Takagi, T., Nishino, S., Nucl.Instr.Meth.B 74, 131 (1993)Google Scholar
30. Addamiano, A., Anderson, G.W., Comas, J., Hughes, H.L., Lucke, W., J.Elecrochem.Soc. 119, 1355 (1972)Google Scholar
31. Lucke, W., Comas, J., Hubler, G. and Dunning, K., J.Appl.Phys. 46, 994 (1975)Google Scholar
32. Heera, V., Pezoldt, J., Ning, X.J. and Pirouz, P., in Nakashima, S., Matsunami, H., Yoshida, S. and Harima, H. (eds.), Proc. 6th ICSCRMM 1995, IOPC series 142, (IOP Publishing 1996) p. 509 Google Scholar
33. Suvorov, A.V., 1.0. Usov, Sokolov, V.V. and Suvorova, A.A., Mat.Res.Soc.Proc. 396, 239 (1996)Google Scholar
34. Edmond, J.A., Withrow, S.P., Kong, H.S., and Davies, R.F., Mater.Res.Soc.Symp.Proc. 51, 395 (1986)Google Scholar
35. Chechenin, N.G., Bourdelle, K.K., Suvorov, A.V., Kastilio-Vitloch, A.X., Nucl.Instr.Meth. B 65, 341 (1992)Google Scholar
36. Hornton, L.L., Bentley, J., Romana, L., Perez, A., McHargue, C.J., McCallum, J.C., Nucl.Instir.Meth. B 65, 345 (1992)Google Scholar
37. Argawal, A.M. and Dunham, S.T., J.Appl.Phys. 78, 5313 (1995)Google Scholar
38. Huang, H. and Ghoniam, N., J.Nucl.Mater. 212–215, 148 (1994)Google Scholar
39. Pacaud, Y., Skorupa, W., Perez-Rodriguez, A., Brauer, G., Stoemenos, J., Barklie, R.C., Nucl.Instr.Meth.B112, 321 (1996)Google Scholar
40. Brauer, G., Anwand, W., Coleman, P.G. and Knights, A.P., Plazaola, F., Pacaud, Y., Skorupa, W., Stōrmer, J. and Willutzki, P., Phys.Rev. B 54, 3084 (1996).Google Scholar
41. Perez-Rodriguez, A., Pacaud, Y., Calvio-Barro, L., Serre, C., Skorupa, W., Morante, J.R., J.Electr. Mater. 25, 541 (1996)Google Scholar
42. Boise, W., Conrad, J., Rödle, T. and Weber, T., Surf.Coat.Techn. 74–75, 927 (1995)Google Scholar
43. Chehaidar, A., Caries, R., Zwick, A., Meunier, C., Cros, B. and Durand, J., J.Non-Cryst.Sol. 169, 37 (1994)Google Scholar
44. Wong, J., Diaz de ia Rubia, T., Guinan, M.W., Tobin, M., Perlado, J.M., Perez, A.S., Sanz, J., J.Nucl.Mater. 212–215, 143 (1994)Google Scholar
45. Sayed, M., Jefferson, J.H., Walker, A.B. and Cullis, A.G., Nucl.Instr.Meth. B 102, 232 (1995)Google Scholar
46. Hart, R.R., Dunlap, H.L. and Marsh, O.J., Rad.Effects 9, 261 (1971)Google Scholar
47. Corbett, J.W., Electron Radiation Damage in Semiconductors and Metals, (Academic Press, N.Y. 1966, p.89)Google Scholar
48. Barry, A.L., Lehmann, B., Fritsch, D., and Brāunig, D., IEEE Trans.Nucl.Sci. 38, 1111 (1991)Google Scholar
49. Thompson, D.A., Golanski, A., Haugen, K.H., Stevanovic, D.V., Carter, G., Christodoulides, C.E., Rad.Eff. 52, 69 (1980).Google Scholar
50. Wang, K.W., Spitzer, W.G., Hubler, G.K. and Sandra, D.K., J.Appl.Phys. 58, 4553 (1985)Google Scholar
51. Spitznagel, J.A., Wood, S., Choyki, W.J., Doyle, N.J., Bradshaw, J., and Fishman, S.G., Nucl.lnstr.Meth. B 16, 237 (1986)Google Scholar
52. Heera, V., Stoemenos, J., Kögler, R. and Skorupa, W., J.Appl.Phys. 77, 2999 (1995)Google Scholar
53. Weber, W.J., Wang, L.M. and Yu, N., Nuci.Instr.Meth. B 116, 322 (1996)Google Scholar
54. Musumeci, P., Calcagno, L., Grimaldi, M.G. and Foti, G., Nucl.Instr.Meth. B116, 327 (1996)Google Scholar
55. Roorda, S., Custer, J.S., Sinke, W.C., Poate, J.M., Jacobson, D.C., Polman, A., Spaepen, F., Nucl.Instr.Meth. B59/60, 344 (1991)Google Scholar
56. Heera, V., Schell., N. Prokert, F., Seifarth, H., Skorupa, W., to be publischedGoogle Scholar
57. Davis, R.F., Thin Solid Films 181,1 (1989)Google Scholar
58. Inoue, N., Itoh, A., Kimoto, T., Matsunami, H., Nakata, T., and Watanabe, M., in Nakashima, S., Matsunami, H., Yoshida, S. and Harima, H. (eds.) Proc. 6th ICSCRM 1995, IOPC series 142, (IOP Publishing 1996), p. 525 Google Scholar
59. Ryu, J., Kim, H.J. and Davis, R.F., Mat.Res.Soc.Symp.Proc. 52, 165 (1986)Google Scholar
60. Pacaud, Y., Heera, V., Yankov, R.A., Kögler, R., Brauer, G., Voelskow, M., Skorupa, W., Stoemenos, J., Perez-Rodriguez, A., Calvo-Barrio, L., Serre, C., Morante, J.R., Barklie, R., Collins, M., Holm, B., presented at 1996 UIT, Austin 1996 Google Scholar
61. Pacaud, Y., Stoemenos, J., Brauer, G., Yankov, R.A., Heera, V., Voelskow, M., Kōgler, R., Skorupa, W., Nucl.Instr.Meth. B 120, 177 (1996)Google Scholar
62. Barklie, R.C., Collins, M., Holm, B., Pacaud, Y., Skorupa, W., J.Electr. Materials, to be publishedGoogle Scholar
63. Pacaud, Y., Skorupa, W., Stoemenos, J., Nucl.Instr.Meth. B 120, 181 (1996)Google Scholar
64. Yoshii, K., Suzaki, Y., Takeuchi, A., Yasutake, K., Kawabe, H., Thin Solid Films 199, 85 (1991)Google Scholar
65. Olson, G.L., Roth, J.A., Mater.Sci.Rep. 3, 1 (1988)Google Scholar
66. Bohn, H.G., Williams, J.M., McHargue, C.J., Begun, G.M., J.Mater.Res. 2, 107 (1987)Google Scholar
67. Glaser, E., Heft, A., Heindl, J., Kaiser, U., Bachmann, T., Wesch, W., Strunk, H.P. and Wendler, E., Inst.Phys.Conf.Ser. 142, 557 (1996)Google Scholar
68. Heera, V., Kōgler, R., Skorupa, W. and Stoemenos, J., Appi.Phys.Lett. 67, 1999 (1995)Google Scholar
69. Edmond, J.A., Withrow, S.P., Wadlin, W., and Davis, R.F., Mat.Res.Soc.Symp.Proc. 77, 193 (1987)Google Scholar
70. Kawase, D., Ohno, T., Iwasaki, T. and Yatsuo, T., in Nakashima, S., Matsunami, H., Yoshida, S. and Harima, H. (eds.), Proc. 6th ICSCRM 1995, IOPC series 142, (IOP Publishing 1996) p. 513 Google Scholar
71. Priolo, F., Rimini, E., Mater.Sci.Rep. 5, 319 (1990)Google Scholar
72 Kōgler, R., Heera, V., Skorupa, W., Voelskow, M., in Williams, J.S., Elliman, R.G., Ridgeway, M.C (eds.) Proc. IBMM 1996, Elsevier Science B.V., p.912 Google Scholar
73. Behrisch, R. (ed.), Sputtering by particle bombardment, Topics in Applied Physics, Vol.47 (1981), Vol. 52 (1983), Springer Verlag, Berlin Google Scholar
74. Sigmund, P., Phys. Rev. 184, 383 (1969)Google Scholar
75. Eckstein, W.: Computersimulation of Ion-Solid Interaction, Springer Series in Materials Science, Vol.10 (Springer, Berlin, Heidelberg 1991)Google Scholar
76. Garcia-Rosales, C., Eckstein, W., Roth, J., J.Nuci.Mater. 218, 8 (1994)Google Scholar
77. Mohri, M., Watanabe, K., Yamashina, T., Doi, H. and Hayakawa, K., J.Nucl.Mater. 75, 309 (1978)Google Scholar
78. Roth, J., Bohdansky, J., Martinelli, A.P., Radiat. Eff. 48, 213 (1980)Google Scholar
79. Hechtl, E., Bohdansky, J., Roth, J., J.Nucl.Mater. 103& 104, 333 (1981).Google Scholar
80. Comas, J. and Cooper, B.C., J.Appl.Phys. 37, 2820 (1966)Google Scholar
81. Pezoldt, J., Stottko, B., Kupris, G. and Ecke, G., Mater.Sci.Eng. B 29, 94 (1995)Google Scholar
82. Maissel, L.I. and Glang, R. (eds.)”Handbook of Thin Film Technology”, McGraw-Hill, NY 1970, p.440 Google Scholar
83. Malherbe, J.B., Critical Reviews in Solid State and Materials Science, 19, 55 (1994)Google Scholar
84. Eckstein, W., Garcia-Rosales, C., Roth, J. and Ottenberger, W., IPP-Report 9/82, Garching 1993 Google Scholar
85. Schneider, P., Bischoff, L., Teichert, J. and Hesse, E., Nuci.Instr.Meth. B 117, 77 (1996)Google Scholar
86. Muelhoff, L., Choyke, W.J., Bozack, M.J., and Yates, J. T Jr., J.Appl.Phys. 60, 2842 (1986)Google Scholar
87. Ghoshtagore, R.N., Solid-State Electronics 9, 178 (1966)Google Scholar
88. Mohri, M., Watanabe, K., Yamashina, T., J.Nucl.Mater. 75, 7 (1978)Google Scholar
89. Philipps, V., Vietzke, E. and Trinkaus, H., J.Nucl.Mater. 179–181, 25 (1991)Google Scholar
90. Vaughn, W.L. and Maahs, H.G., J.Am.Ceram.Soc. 73, 1540 (1990)Google Scholar
91. Narushima, T., Goto, T., Iguchi, Y. and Hirai, T., J.Am.Ceram.Soc. 74, 2583 (1991)Google Scholar