Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T04:44:11.219Z Has data issue: false hasContentIssue false

Ion-Induced Surface Modification of Alloys*

Published online by Cambridge University Press:  25 February 2011

H. Wiedersich*
Affiliation:
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
Get access

Abstract

In addition to the accumulation of the implanted species, a considerable number of processes can affect the composition of an alloy in the surface region during ion bombardment. Collisions of energetic ions with atoms of the alloy induce local rearrangement of atoms by displacements, replacement sequences and by spontaneous migration and recombination of defects within cascades. Point defects form clusters, voids, dislocation loops and networks. Preferential sputtering of elements changes the composition of the surface. At temperatures sufficient for thermal migration of point defects, radiation-enhanced diffusion promotes alloy component redistribution within and beyond the damage layer. Fluxes of interstitials and vacancies toward the surface and into the interior of the target induces fluxes of alloying elements leading to depthdependent compositional changes. Moreover, Gibbsian surface segregation may affect the preferential loss of alloy components by sputtering when the kinetics of equilibration of the surface composition becomes competitive with the sputtering rate. Temperature, time, current density and ion energy can be used to influence the individual processes contributing to compositional changes and, thus, produce a rich variety of composition profiles near surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work supported by the U.S. Department of Energy.

References

REFERENCES

1. Benenson, R. E., Kaufmann, E. N., Miller, G. L. and Scholz, W. W., eds.,Ion Beam Modifications of Materials (North-Holland, Amsterdam 1981);Google Scholar
1a.also see Nucl. Instrum. Methods 182/183, (1981).Google Scholar
2. Biasse, B., Destafanis, G. and Gailliard, J. P., eds., Ion Beam Modifications of Materials (North-Holland, Amsterdam 1983);Google Scholar
2a.also see Nucl. Instrum. Methods 209/210 (1983).Google Scholar
3. Preece, J. M. and Hirvonen, J. K., eds., Ion Implantation Metallurgy (TMS-AIME, New York 1980).Google Scholar
4. Peterson, N. L. and Harkness, S. D., eds., Radiation Damage in Metals (American Society for Metals, Metals Park, Ohio 1976).Google Scholar
5. Nolfi, F. V. Jr., ed., Phase Transformations During Irradiation (Applied Science Publishers, London and New York, 1983).Google Scholar
6. Poate, J. M., Foti, G. and Jacobson, D. C., eds., Surface Modification and Alloying by Laser, Ion and Electron Beams (Plenum Press, New York and London, 1983).Google Scholar
7. Picraux, S. T. and Choyke, W. J., eds., Metastable Materials Formation by Ion Implantation (Elsevier Science Publishing Co., New York 1982).Google Scholar
8. Wiedersich, H., Anderson, H. H., Lam, N. Q., Rehn, L. E. and Pickering, H. W., pp. 261–285 in Ref. 6.Google Scholar
9. Picraux, S. T. and Follsteadt, D. M., in Ref. 6, pp. 287–321.Google Scholar
10. Linker, G., Nucl. Instrum. Methods 182/183, 501 (1981).Google Scholar
11. Wiedersich, H. in Ref. 4, pp. 157–193.Google Scholar
12. Brailsford, A. D. and Bullough, R., J. Nucl. Mater. 69 & 70, 434 (1978).Google Scholar
13. Merkle, K. L. in Ref. 3, pp. 58–94;Google Scholar
13a. Robinson, M. T. in Ref. 3, pp. 1–27.Google Scholar
14. Davies, J. A. in Ref. 6, pp. 189–209.Google Scholar
15. Black, T. J., Jenkins, M. L. and Kirk, M. A. in: Proc. EMAG 83 (Electron Microscopy and Analysis Group - 1983), Guildford, England, August 1983, in press.Google Scholar
16. Wiedersich, H. in: Advanced Techniques for Characterizing Microstructures, Wiffen, F. W. and Spitznagel, J. A., eds. (AIME, New York 1982) pp. 1530.Google Scholar
17. Anderson, H. H., Appl. Phys. 18, 131 (1979).Google Scholar
18. Littmark, U. and Hofer, H. O., Nucl. Instrum. Methods 168, 329 (1980).Google Scholar
19. Sigmund, P. and Gras-Marti, A., Nucl. Instrum. Methods 182/183, 25 (1981).Google Scholar
20. Matteson, S., Paine, B. M. and Nicolet, M.-A., Nucl. Instrum. Methods 182/183, 53 (1981).Google Scholar
21. Sigmund, P., Appl. Phys. A 30, 43 (1983).Google Scholar
22. Shewmon, P. G., Diffusion in Solids (McGraw-Hill, New York, 1963).Google Scholar
23. Lam, N. Q., Rothman, S. J. and Sizmann, R., Radiat. Eff. 23, 53 (1974).Google Scholar
24. Sizmann, R., J. Nucl. Mater, 69/70, 386 (1968).Google Scholar
25. Wiedersich, H. and Lam, N. Q., in Ref. 5, pp. 1–46.Google Scholar
26. Rothman, S. J., in Ref. 5, pp. 189–211.Google Scholar
27. King, W. E. and Benedek, R., J. Nucl. Mater. 117, 26 (1983).Google Scholar
28. Kirk, M. A. and Blewitt, T. H., Met. Trans. A 9, 1729 (1978);Google Scholar
28a.also see J. Nucl. Mater. 108/109, 124 (1982).Google Scholar
29. Zee, R. H., Guinan, M. W. and Kulcinski, G. L., J. Nucl. Mater. 114, 190 (1983).Google Scholar
30. Averback, R. S., Thompson, L. J. and Rehn, L. E., these proceedings; also see S.-J. Kim, R. S. Averback, P. Baldo and M.-A. Nicolet,submitted to Appl. Phys. Lett.Google Scholar
31. Sigmund, P. in: Sputtering by Particle Bombardment I, Behrish, R., ed., Topics in Applied Physics (Springer, Berlin 1981) pp. 1171.Google Scholar
32. Falcone, G. and Sigmund, P., Appl. Phys. 25, 307 (1981).Google Scholar
33. Lam, N. Q., Hoff, H. A., Wiedersich, H. and Rehn, L. E., these proceedings.Google Scholar
34. Anderson, H. H. in: Physics of Ionized Gases (SPIG 1980), Matić, M., ed. (Boris Kidric Institute of Nuclear Science, Beograd, Yugoslavia, 1980) p. 421.Google Scholar
35. Wynblatt, P. and Ku, R. C. in: Interfacial Segregation, Johnson, W. C. and Blakely, J. M., eds. (American Society for Metals, Metals Park, Ohio 1979) p. 115.Google Scholar
36. Ng, Y. S., Tsong, T. T. and McLane, S. B. Jr., Phys. Rev. Lett. 42, 588 (1979).Google Scholar
37. Rehn, L. E., Lam, N. Q. and Wiedersich, H., these proceedings.Google Scholar
38. Rehn, L. E., Boccio, V. T. and Wiedersich, H., Surface Sci. 128, 37 (1983).Google Scholar
39. Wiedersich, H. and Lam, N. Q. in Ref. 5, pp. 1–46.Google Scholar
40. Rehn, L. E. and Okamoto, P. R. in Ref. 5, pp. 237–290.Google Scholar
41. Potter, D. I. in Ref. 5, pp. 213–245.Google Scholar
42. Allen, C., Okamoto, P. R. and Zaluzec, N. J., to be published.Google Scholar