Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-02-04T18:58:22.005Z Has data issue: false hasContentIssue false

Is interstitial hydrogen playing a role in the Staebler-Wronski effect ?

Published online by Cambridge University Press:  17 March 2011

C. Longeaud
Affiliation:
Laboratoire de Génie Electrique de Paris (UMR 8507 CNRS), Supélec, Universités Paris VI et XI, Plateau de Moulon 91190, Gif sur Yvette, France.
D. Roy
Affiliation:
Laboratoire de Génie Electrique de Paris (UMR 8507 CNRS), Supélec, Universités Paris VI et XI, Plateau de Moulon 91190, Gif sur Yvette, France.
Get access

Abstract

We have studied the density of states (DOS) of many different series of a-Si:H samples prepared in radio-frequency powered deposition systems. Samples were obtained from decomposition of pure silane or of mixtures of silane with argon, helium or hydrogen. The DOS were investigated in the as-deposited, light-soaked and annealed states. For all the samples the light-soaking behaviour is almost the same: 2 min of light-soaking are enough to increase the deep states density and after full saturation both the deep states and the conduction band tail exhibit a large increase. The effect of the annealing process is sample dependent, the DOS being restored for some samples or almost insensitive to the annealing process in some cases. To explain all these results, we propose a mechanism of light-soaking/annealing in which interstitial H2 molecules and voids play a major role.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
2. Longeaud, C., Roy, D. and Hangouan, Z. Teukam, App. Phys. Lett. 77, 3604 (2000).Google Scholar
3. Tuttle, B. and Walle, C. G. Van de, Phys. Rev. B 59, 12884 (1999).Google Scholar
4. Darwich, R., Cabarrocas, P. Roca i, Vallon, S., Ossikovski, R., Morin, P., Phil. Mag. B 72, 363 (1995)Google Scholar
5. Walle, C. G. Van de and Tuttle, B., Mat. Res. Soc. Symp. Proc. 557, 275 (1999).Google Scholar
6. Chevallier, J. and Pajot, B., to be published in “Interaction of defect in semiconductors”, Trans Tech Pub., Pizzini, S. Editor.Google Scholar
7. Estreicher, S. K., Hastings, J. L. and Fedders, P. A., Phys. Rev. B 57, R12663 (1998).Google Scholar
8. Borzi, R., Mascarenhas, F, Fedders, P. A., Leopold, D. J., Norberg, R. E., Mat. Res. Soc. Symp. Proc. 557, 287 (1999).Google Scholar
9. Walle, C. G. Van de, Phys. Rev. B 49, 4579 (1994).Google Scholar
10. Sheng, S., Kong, G. and Liao, X, Solid State Comm. 116, 519 (2000)Google Scholar
11. Biswas, R. and Li, Y.- P., J. Non Cryst. Solids 266–269, 401 (2000).Google Scholar
12. Robertson, J., J. Appl. Phys. 87, 2608 (2000).Google Scholar
13. Kim, Y. S. and Chang, K. J., Phys. Rev. Lett. 86, 1773 (2001).Google Scholar
14. Mahan, A. H., Yang, J., Guha, S. and Williamson, D. L., Mat. Res. Soc. Symp. Proc. 557, 269 (1999).10.1557/PROC-557-269Google Scholar
15. Keudell, A. Von and Abelson, J. R., J. Appl. Phys. 84, 489 (1998).Google Scholar
16. Xu, X., Yang, J. and Guha, S., J. Non-Cryst. Solids 198–200, 60 (1996).Google Scholar
17. Cabarrocas, P.Roca i, Hamma, S., St'ahel, P., Longeaud, C., Kleider, J. P., Meaudre, R., Meaudre, M., Proc. 14th European Photovoltaic Solar Energy Conf., Barcelona, Spain, 1444 (1997).Google Scholar
18. Gotoh, T., Nonomura, S., Nishio, M., Masui, N., Nitta, S., Kondo, M., Matsuda, A., J. Non-Cryst. Solids 227–230, 263 (1998).Google Scholar
19. Fritzsche, H., Mat. Res. Soc. Symp. Proc. 467, 19 (1999).Google Scholar
20. Stutzmann, M., Mat. Res. Soc. Symp. Proc. 467, 37 (1997).Google Scholar