Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T13:54:52.165Z Has data issue: false hasContentIssue false

Kinetic Monte Carlo Simulation of Dislocation Dynamics

Published online by Cambridge University Press:  10 February 2011

Karin Lin
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720 Division of Materials Sciences, Lawrence Berkeley National Laboratories, Berkeley, CA 94720
D. C. Chrzan
Affiliation:
Division of Materials Sciences, Lawrence Berkeley National Laboratories, Berkeley, CA 94720 Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
Get access

Abstract

A kinetic Monte Carlo simulation of dislocation motion is introduced. The dislocations are assumed to be composed of pure edge and screw segments only, and are assumed to be confined to a fixed lattice. The stress and temperature dependence of the dislocation velocity is studied. It is also noted that the simulated dislocations display kinetic roughening.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kolar, H. R., Spence, J. C. H., and Alexander, H., Phys. Rev. Lett. 77, 4031 (1996).Google Scholar
2. Bennetto, J., Nunes, R. W., and Vanderbilt, D., Phys. Rev. Lett. 79, 245 (1997).Google Scholar
3. Xu, W. and Moriarty, J. A., Comp. Mat. Sci. 9, 348 (1998).Google Scholar
4.4. Huang, Y. M., Spence, J. C. H., and Sankey, O. F., Phys. Rev. Lett. 74, 3392 (1995).Google Scholar
5. Seeger, A. and Schiller, P., in Physical Acoustics, edited by Mason, W. P. (Academic, New York, 1966), Vol. 3A.Google Scholar
6. Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (Krieger Publishing Company, Malabar, Florida, 1992).Google Scholar
7. Maksym, P. A., Semicond. Sci. Technol. 3, 594 (1988).Google Scholar
8. Suzuki, T., H, K., and Kirchner, H. O. K., Acta mater. 43, 2177 (1995).Google Scholar
9. Nemat-Nasser, S. and Isaacs, J. B., Acta mater. 45, 1227 (1997).Google Scholar
10. Maurissen, Y. and Capella, L., Philos. Mag. 29, 1227 (1974).Google Scholar
11. Maurissen, Y. and Capella, L., Philos. Mag. 30, 679 (1974).Google Scholar
12. Krug, J. and Spohn, H., in Solids Far From Equilibrium, edited by Godrèche, C. (Cam-bridge University Press, Cambridge, 1992).Google Scholar
13. Family, F. and Vicsek, T., J. Phys. A 18, 75 (1985).Google Scholar
14. Kardar, M., Parisi, G., and Zhang, Y. C., Phys. Rev. Lett. 56, 889 (1986).Google Scholar