Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-22T02:15:53.606Z Has data issue: false hasContentIssue false

Kinetics of Oxygen Exchange in Sr(Ti0.65Fe0.35)O3

Published online by Cambridge University Press:  11 February 2011

Th. Schneider
Affiliation:
Universität Karlsruhe (TH), Institut für Werkstoffe der Elektrotechnik, 76128 Karlsruhe, Germany, schneider@iwe.uni-karlsruhe.de
S. F. Wagner
Affiliation:
Universität Karlsruhe (TH), Institut für Werkstoffe der Elektrotechnik, 76128 Karlsruhe, Germany, schneider@iwe.uni-karlsruhe.de
W. Menesklou
Affiliation:
Universität Karlsruhe (TH), Institut für Werkstoffe der Elektrotechnik, 76128 Karlsruhe, Germany, schneider@iwe.uni-karlsruhe.de
E. Ivers-Tiffée
Affiliation:
Universität Karlsruhe (TH), Institut für Werkstoffe der Elektrotechnik, 76128 Karlsruhe, Germany, schneider@iwe.uni-karlsruhe.de
Get access

Abstract

Current limiting electrochemical pumping cells (amperometric sensors) based on zirconia are commonly used for engine control applications. Fast resistive-type sensors adapted from semiconducting metal oxides are a promising alternative for future exhaust gas monitoring systems. Therefore among the interesting characteristics of the materials system Sr(Ti0.65Fe0.35)O3, including high sensitivity and temperature independence at high oxygen partial pressures (pO2 > 10-4 bar), a short response time (t90 = 30 ms) is obviously the most salient.

The latter is determined by the kinetics of the oxygen surface transfer and subsequent diffusion of oxygen vacancies VO. For thin samples and low temperatures the surface transfer is dominant, since bulk diffusion usually occurs very fast. The presented model is based on the frequency-domain analysis of amplitude and phase shift of the response signal obtained from a pO2 modulation in a fast kinetic measurement setup. This method allows both the measurement of response times in the sub-millisecond range as well as the distinction of the behaviour either controlled by volume diffusion or by surface transfer reaction in Sr(Ti0.65Fe0.35)O3 ceramics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ivers-Tiffée, E., Härdtl, K. H., Menesklou, W., Riegel, J., Electrochimica Acta 47, 807 (2001)Google Scholar
2. Moos, R., Härdtl, K.H., J. Am. Ceram. Soc. 80, 2549 (1997)Google Scholar
3. Menesklou, W., Schreiner, H.-J., Härdtl, K. H., Ivers-Tiffée, E., Sens. Actuators B 59, 184 (1999)Google Scholar
4. Steinsvik, S., Bugge, R., Gjønnes, J., Taftø, J., Norby, T., J. Phys. Chem. Solids 58, 969 (1997)Google Scholar
5. Menesklou, W., Schreiner, H.-J., Moos, R., Härdtl, K. H., Ivers-Tiffée, E., MRS Proc. Vol. 604, 305 (2000)Google Scholar
6. Tragut, Ch., Härdtl, K. H., Sens. Actuators B 4, 425 (1991)Google Scholar
7. Tragut, C., Sens. Actuators B 7, 742 (1992)Google Scholar
8. Maier, J., Solid State Ionics 135, 575 (2000)Google Scholar