Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-01T04:38:54.488Z Has data issue: false hasContentIssue false

Kondo-excitons and Auger processes in self-assembled quantum dots

Published online by Cambridge University Press:  11 February 2011

A. O. Govorov
Affiliation:
Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
K. Karrai
Affiliation:
Center for NanoScience and Sektion Physik, Ludwig-Maximilians-Universität, 80539 München, Germany
R. J. Warburton
Affiliation:
Department of Physics, Heriot-Watt University, Edinburgh EH14 4AS, UK
A. V. Kalameitsev
Affiliation:
Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
Get access

Abstract

We describe theoretically novel excitons in self-assembled quantum dots interacting with a two-dimensional (2D) electron gas in the wetting layer. In the presence of the Fermi sea, the optical lines become strongly voltage-dependent. If the electron spin is nonzero, the width of optical lines is given by kBTK, where TK is Kondo temperature. If the spin is zero, the exciton couples with the continuum due to Auger-like processes. This leads to anticrossings in a magnetic field. Such states can be called Kondo-Anderson excitons. Some of the described phenomena are observed in recent experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goldhaber-Gordon, D. et al., Nature (London) 391, 156 (1998);Google Scholar
Cronenwett, S. M., Oosterkamp, T. H., and Kouwenhoven, L. P., Science 281, 540 (1998);Google Scholar
Glazman, L. I. and Raikh, M. E., Pis'ma Zh. ?ksp. Teor. Fiz. 67, 1276 (1988) [JETP Lett. 47, 452 (1988)];Google Scholar
Ng, T. K. and Lee, P. A., Phys. Rev. Lett. 61, 1768 (1988).Google Scholar
Shahbazyan, T. V., Perakis, I. E., and Raikh, M. E., Phys. Rev. Lett. 84, 5896 (2000);Google Scholar
Kikoin, K. and Avishai, Y., Phys. Rev. B 62, 4647 (2000).Google Scholar
Warburton, R. J. et al., in the Proceedings of this Meeting.Google Scholar
Warburton, R. J. et al, Nature (London) 405, 926 (2000).Google Scholar
[5] Findeis, F. et al., Phys. Rev. B 63, 121309 (2001).Google Scholar
[6] Luyken, R. J. et al., Appl. Phys. Lett. 74, 2486 (1999).Google Scholar
[7] Hewson, A. C., The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993);Google Scholar
Gunnarsson, O. and Schonhammer, K., Phys. Rev. B 28, 4315 (1983).Google Scholar
[8] The matrix element Vk decreases with the kinetic energy є k . The cut-off parameter D can be estimated as ћ 2/m*a 2, where a and m* are the QD lateral size and electron mass, respectively.Google Scholar
[9] Govorov, A. O. et al., to be published; cond-mat/0211155.Google Scholar
[10] Besides, , the final state includes electron-hole pairs in the Fermi sea.Google Scholar
[11] Ferreira, R. and Bastard, G., Appl. Phys. Lett. 74, 2818 (1999).Google Scholar
[12] In the zero bandwidth model, we replace the Fermi sea by a single “delocalized” state of energy єf Google Scholar