Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:57:49.606Z Has data issue: false hasContentIssue false

Laser Induced Fluorescence for Temperature Measurement in Reacting Flows

Published online by Cambridge University Press:  15 February 2011

R. G. Joklik*
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD 20899
Get access

Abstract

OH vibrational Thermally Assisted Fluorescence (THAF) temperature measurements have been demonstrated in both premixed and diffusion flames. The accuracy of the measurements is generally better than 100 K over a wide range of flame conditions for which the collisional quenching rate varies considerably. Application of this technique for temperature measurement in Chemical Vapor Deposition (CVD) flows, for which the quenching rate is relatively constant, should exhibit greater accuracy. THAF measurements in these flows are limited by signal to noise considerations, and should be possible down to pressures of 103-104 Pa or less.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Anderson, W.R..,Decker, L. J., and Kotlar, A. J., Combust. and Flame, 48, 163 (1982).Google Scholar
2. Crosley, D.R. and Smith, G.P., Combust. and Flame, 44, 27 (1982).Google Scholar
3. Rea, E.C. Jr., and Hanson, R.K., Appl. Opt., 27, 4454 (1988).Google Scholar
4. Rensberger, K.J.., Jeffries, J.B.., Copeland, R.A., Kohse-Hoinghaus, K., Wise, M.L.., and Crosley, D.R., Appl. Opt., 28, 3556 (1989).Google Scholar
5. Lucht, R.P., Laurendeau, N.M., and Sweeney, D.W., Appl. Opt., 21, 3729 (1982).Google Scholar
6. Cattolica, R., Appl. Opt., 20, 1156 (1981).CrossRefGoogle Scholar
7. Zizak, G., Horvath, J.J., Van Dijk, C.A., and Winefordner, J.D., J. Quant. Spectrosc. Radiat. Transfer, 25, 525 (1981).Google Scholar
8. Elder, M.L., Zizak, G., Bolton, D., Horvath, J.J., and Winefordner, J.D., Appl. Spec., 38, 113 (1984).Google Scholar
9. Joklik, R.G., Horvath, J.J., and Semerjian, H.G., Appl. Opt., 30, 1497 (1991).CrossRefGoogle Scholar
10. Crosley, D.R. and Smith, G.P., Appl. Opt., 19,517 (1980).Google Scholar
11. Dyer, M.J. and Crosley, D.R., AFWAL-TR–84–2045 (1984).Google Scholar
12. Joklik, R.G., Combust. Sci. and Tech., to appear.Google Scholar
13. Joklik, R.G.., to appear in “Temperature, Its Measurement and Control in Science and Industry,” Vol.6, AlP.Google Scholar
14. Santoro, R.J., Yeh, T.T., Horvath, J.J., and Semerjian, H.G., Combust. Sci. and Tech., 53, 89 (1987).Google Scholar
15. Huber, K.P. and Herzberg, G., “Molecular Spectra and Molecular Structure, Vol.4. Constants of Diatomic Molecules,” (Van Nostrand Reinhold, New York, 1979).Google Scholar
16. Lengel, R.K. and Crosley, D.R., J. Chem. Phys., 68, 5309 (1978).CrossRefGoogle Scholar
17. Copeland, R.A. and Crosley, D.R., Chem. Phys. Lett., 107, 295 (1984).Google Scholar
18. Bauer, W., Becker, K.H., Duren, R., Hubrich, C., and Meuser, R., Chem. Phys. Lett., 108, 560 (1984).Google Scholar
19. Nemoto, M., Suzuki, A., Nakamura, H., Shibuya, K., and Obi, K., Chem. Phys. Lett., 162, 467 (1989).Google Scholar