Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T23:43:16.205Z Has data issue: false hasContentIssue false

Laser Probes and Numerical Modeling as Process Diagnostics in Chemical Vapor Deposition

Published online by Cambridge University Press:  22 February 2011

William G. Breiland
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Pauline Ho
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Michael E. Coltrin
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Robert J. Kee
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
Greg H. Evans
Affiliation:
Sandia National Laboratories, Livermore, CA 94550
Get access

Abstract

The chemical vapor deposition process consists of a chemicallyreacting flow in which the fluid mechanics and chemical kinetics are strongly coupled. Laser probes such as Raman spectroscopy and laserinduced fluorescence can be used to measure gas temperature fields and chemical species concentrations, but often the interpretation of such data is difficult because several interacting chemical and physical phenomena are occuring simultaneously. Detailed numerical modeling of the experinmental system under study provides valuable insights into these interactions and allows one to make useful comparisons between experiment and the model to gain a fundamental understanding of the CVD process. Examples of this approach are given for silicon deposition from silane and fluid mechanics diagnostics in a rotating disk CVD reactor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jensen, K. F., in Chemical Vapor Deposition, edited by McD. Robinsoul, van den Brekel, C. H. J., Cullen, G. W., Blocher, J. M., and Rai-Choudhury, P. (The Electrochemical Society, Softbound Proceedimigs Series, Pennington, NJ, 1984), p. 3.Google Scholar
2. Coltrin, M. E., Kee, R. J., and Miller, J. A., J. Electrochem. Soc. 131, 425 (1984).CrossRefGoogle Scholar
3. Coltrin, M. E., Kee, R. J., and Miller, J. A., J. Electrochem. Soc. 133, 1206 (1986).CrossRefGoogle Scholar
4. Breiland, W. G., Coltrin, M. E., and Ho, P., J. Appl. Phys. 59, 3267 (1986).Google Scholar
5. Breiland, W. G., Ho, P., and Coltrin, M. E., J. Appl. Phys. 60, 1505 (1986).Google Scholar
6. Newman, C. G., O'Neal, H. E., Ring, M. A., Leska, F., and Shipley, N., Int. J. Chlem. Kin. 11, 1167 (1979).CrossRefGoogle Scholar
7. Bloem, J. and Claassen, W. A. P., J. Cryst. Growth 49, 435 (1980).CrossRefGoogle Scholar
8. Richiman, D., Chang, Y. S., and Robinson, P. H., RCA Rev. 31, 613 (1970).Google Scholar
9. White, F.M., Viscous Fluid Flow, (McGraw Hill, Inc., New York, 1974), pp. 163184. (1974).Google Scholar
10. Olander, D.R., I. and E. C. Fund. 6,178 (1967).Google Scholar
11. Sugawara, K., J. Electrochem. Soc. 119, 1749 (1972).CrossRefGoogle Scholar
12. Pollard, R., and Newman, J., J. Electrochem. Soc. 127, 745 (1980).Google Scholar
13. Hitchman, M.L. and Curtis, B.J., J. Crystal Growth 60, 43 (1982).CrossRefGoogle Scholar
14. Jenkinson, J.P. and Pollard, R., J. Electrochem. Soc. 131, 2911 (1984).CrossRefGoogle Scholar
15. Wang, C.A., Groves, S.H., Palmateer, S.C., Weyburne, D.W., and Brown, R.A., J. Crystal Growth 77, 136 (1986).CrossRefGoogle Scholar
16. Chen, K. and Mortazavi, A.R., J. Crystal Growth 77, 199 (1986).Google Scholar
17. Evans, G.H. and Greif, R., ASME J. Heat Transfer 109, 928 (1987).Google Scholar
18. Evans, G. and Greif, R., Nuiner. Heat Transfer 12, 243 (1987).CrossRefGoogle Scholar
19. Coltrin, M.E., Kee, R.J., Evans, G.H., and Miller, J.A., in Chemical Vapor Depositon, edited by Cullen, G.W. (The Electrochemical Society, Softbound Proceedings Series, Pennington, NJ, 1987), p. 33.Google Scholar