No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Sn-doped Ge-Sb-Te films on Si substrates were prepared by laser synthesis at the different growth temperatures. The compositions of Sn-doped Ge-Sb-Te films were analysized by X-ray photoelectron spectroscopy. The crystal structures of Sn-doped Ge-Sb-Te thin films with a Sn content of less than 30 at% are close to Ge2Sb2Te5. The crystallization behaviors of Sn-doped Ge-Sb-Te films were analyzed by self-developed phase change temperature tester. The crystallization temperatures of Sn4.3Ge32.9Sb28.1Te34.6, Sn9.8Ge20.3Sb28.4Te41.5 and Sn18.8Ge19.5Sb25.3Te36.4 are 141.5, 137.3 and 135.0 °C at a ramp rate of 20 °C/min, respectively. Doping Sn into Ge-Sb-Te will result in a decrease of crystallization temperature. It was also found that crystallization temperature increases with an increase of ramp rate for a phase change material. The activity energy Ea and frequency factor ¦Ô for Sn9.8Ge20.3Sb28.4Te41.5 thin films are 2.42 eV and 1.7 × 1026 Hz, respectively. The crystallization speed of Sn-doped Ge-Sb-Te is estimated to be faster than Ge2Sb2Te5.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.