Article contents
A Laser Triggered Self-Sustaining Metals-Compound Semiconductor Transition for AlSb
Published online by Cambridge University Press: 15 February 2011
Abstract
The preparation of AlSb thin films by pulsed laser annealing of Al/Sb sandwiches is studied in order to resolve some past controversy about the temperature rise induced by the laser pulse. Using 1000 Ȧ thick two layer films supported by TEM grids, we investigate the energy threshold for complete transformation as a function of pulse duration from 15 nsec to 100 msec, and of ambient temperature from −100°C to 250°C.
We thence calculate the temperature effect directly induced by the laser to be about 930°C, or approximately the melting point of the metals, whereas inert gas furnace anneals of comparable films show transformation at this temperature occuring only in about 100 sec. We discuss the isoenergetic nature of the system for short laser pulses and the role of the heat of transformation, and thus conclude that the reaction is thermally triggered by the laser pulse but is to some extent self-sustaining via the heat of transformation locally distributed. This model is also shown to have equal validity for the systems CdTe, CdSe and AlAs.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1982
References
REFERENCES
- 1
- Cited by