Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T16:20:06.912Z Has data issue: false hasContentIssue false

Lateral Solid Phase Epitaxy of Silicon Over Oxide

Published online by Cambridge University Press:  22 February 2011

J.A. Roth
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road Malibu, CA 90265
G.L. Olson
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road Malibu, CA 90265
L.D. Hess
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road Malibu, CA 90265
Get access

Abstract

We review recent progress in the growth of siliconon-insulator films by lateral solid phase epitaxy. The temperature dependence of the rates of random crystallization and solid phase epitaxy are used to predict the maximum growth of Si over oxide achievable by this technique. Actual overgrowth distances of 10 μm obtained in UHV-deposited films are considerably less than the values predicted. Several possible causes of the difference between observed and predicted overgrowth are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Csepregi, L., Mayer, J.W., and Sigmon, T.W., Phys. Lett. 54A, 157 (1975).Google Scholar
2.Csepregi, L., Kennedy, E.F., Gallagher, T.J., Mayer, J.W. and Sigmon, T.W., J. Appl. Phys. 48, 4234 (1977).Google Scholar
3.Csepregi, L., Kennedy, E.F., Mayer, J.W. and Sigmon, T.W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
4.Olson, G.L., Kokorowski, S.A., Roth, J.A. and Hess, L.D. in Laser-Solid Interactions and Transient Thermal Processing of Materials, Narayan, J., Brown, W.L. and Lemons, R.A., Eds., (North Holland New York, 1983) pp. 141154.Google Scholar
5.Kokorowski, S.A., Olson, G.L. and Hess, L.D., J. Appl. Phys. 53, 921 (1982).Google Scholar
6.Roth, J.A. and Anderson, C.L., Appl. Phys. Lett. 31, 689 (1977).Google Scholar
7.Bean, J.C. and Poate, J.M., Appl. Phys. Lett. 36, 59 (1980).Google Scholar
8.Roth, J.A., Olson, G.L., Kokorowski, S.A., and Hess, L.D., in Laser and Electron-Beam Solid Interactions and Materials Processing, edited by Gibbons, J.F., Hess, L.D., and Sigmon, T.W. (Elsevier North Holland, New York, 1981), pp. 413426.Google Scholar
9.Roth, J.A., Kokorowski, S.A., Olson, G.L., and Hess, L.D. in Laser and Electron-Beam Interactions with Solids, Appleton, B.R., Celler, G.K., Eds. (North Holland, New York, 1982), p. 169176.Google Scholar
10.Kunii, Y., Tabe, M. and Kajiyama, K., Jap. J. Appl. Phys. 22, 605 (1983) Supplement 22–1.Google Scholar
11.Ishiwara, H., Yamamoto, H. and Furukawa, S., Appl. Phys. Lett. 43, 1028 (1983).Google Scholar
12.Yamamoto, H., et al. , presented at the Materials Research Society Symposium on Thin Films and Interfaces,Boston, Mass., 1983 (proceedings to be published).Google Scholar