Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T19:38:41.658Z Has data issue: false hasContentIssue false

Lattice Site Location Studies of Rare-Earths Implanted in ZnO Single-Crystals

Published online by Cambridge University Press:  11 February 2011

Elisabete M.C. Rita
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, PT-2685 Sacavém, Portugal CFNUL, Av. Prof. Gama Pinto 2, PT-1699 Lisboa Codex, Portugal
Ulrich Wahl
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, PT-2685 Sacavém, Portugal CFNUL, Av. Prof. Gama Pinto 2, PT-1699 Lisboa Codex, Portugal
Armandina L. Lopes
Affiliation:
Departamento de Física da Universidade de Aveiro, PT-3800 Aveiro, Portugal
João P. Araújo
Affiliation:
IFIMUP, University of Porto, PT-4150 Porto, Portugal
João G. Correia
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, PT-2685 Sacavém, Portugal CFNUL, Av. Prof. Gama Pinto 2, PT-1699 Lisboa Codex, Portugal CERN-EP, CH-1211 Geneva 23, Switzerland
Eduardo Alves
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, PT-2685 Sacavém, Portugal CFNUL, Av. Prof. Gama Pinto 2, PT-1699 Lisboa Codex, Portugal
José C. Soares
Affiliation:
Instituto Tecnológico e Nuclear, Estrada Nacional 10, PT-2685 Sacavém, Portugal CFNUL, Av. Prof. Gama Pinto 2, PT-1699 Lisboa Codex, Portugal
Isolde Collaboration
Affiliation:
CERN-EP, CH-1211 Geneva 23, Switzerland
Get access

Abstract

In this work we report on the lattice site location of rare earths in single-crystalline ZnO by means of the emission channeling (EC) technique. Following low dose (3×1013at/cm2) 60 keV ion implantation of the precursor isotope 169Yb, a position-sensitive electron detector was used to monitor the angular distribution of the conversion electrons emitted from 169Tm* as a function of the annealing temperature up to 600°C in vacuum. An additional annealing at 800°C in flowing O2 was performed. The EC measurements revealed that around 95–100% of the rare earth atoms occupy substitutional Zn sites up to an annealing temperature of 600°C/vacuum. After the 800°C/O2 annealing, the emission channeling effects decreased considerably.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gregorkiewicz, T. and Langer, J.M., Mat. Res. Soc. Bull. 24/9, 27 (1999).Google Scholar
2. Favennec, P.N., L'Haridon, H., Moutonnet, D., Salvi, M., and Gauneau, M., Mater. Res. Soc. Symp. Proc. 301, 181 (1993).Google Scholar
3. Quang, V.X., Liem, N.Q., Thanh, N.C., Chuong, T.V., and Le Thanh, L.T., Phys. Stat. Sol. 78, K161 (1983).Google Scholar
4. Bachir, S., Azuma, K., Kossanyi, J., Valat, P., and Ronfard-Haret, J.C., J. Lumin. 75, 35 (1997).Google Scholar
5. Park, Y.K., Han, J.I., Kwak, M.G., Yang, H., Ju, S.H., and Cho, W.S., Appl. Phys. Lett. 72, 668 (1998).Google Scholar
6. Mais, N., Reithmaier, J.P., Forchel, A., Kohls, M., Spanhel, L., and Müller, G., Appl. Phys. Lett. 75, 2005 (1999).Google Scholar
7. Komuro, S., Katsumata, T., Morikawa, T., Zhao, X., Isshiki, H., and Aoyagi, Y., Appl. Phys. Lett. 76, 3935 (2000).Google Scholar
8. Komuro, S., Katsumata, T., Morikawa, T., Zhao, X., Isshiki, H., and Aoyagi, Y., J. Appl. Phys. 88, 7129 (2000).Google Scholar
9. Zhao, X., Komuro, S., Aoyagi, Y., and Sugano, T., J. Lumin. 87–89, 1254 (2000).Google Scholar
10. Liu, S.M., Liu, F.Q., and Wang, Z.G., Chem. Phys. Lett. 343, 489 (2001).Google Scholar
11. Wahl, U., Correia, J.G., Cardoso, S., Marques, J.G., Vantomme, A., Langouche, G., and the ISOLDE collaboration, Nucl. Instrum. Meth. B 136–138, 744750 (1998).Google Scholar
12. Purchased from Eagle-Picher Technologies, Miami, OK 74354.Google Scholar
13. Kugler, E., Fiander, D., Jonson, B., Haas, H., Przewloka, A., Ravn, H. L., Simon, D. J., Zimmer, K., and the ISOLDE collaboration, Nucl. Instrum. Meth. Phys. Res. B 70, 41 (1992).Google Scholar
14. Ziegler, J.F. and Biersack, J.P., The Stopping and Range of Ions in Matter (Pergamon Press, New York, 1985).Google Scholar
15. Hofsäss, H. and Lindner, G., Phys. Rep. 210, 121 (1991).Google Scholar
16. Rössler, U., in Landolt-Börnstein New Series, Vol. 22, edited by Madelung, O. (Springer, Berlin, 1989), p. 163.Google Scholar
17. Schulz, H. and Thiemann, K.H., Solid State Comm. 32, 783 (1979).Google Scholar
18. Wahl, U., Vantomme, A., Langouche, G., Araújo, J.P., Correia, J.G., Peralta, L., and the ISOLDE collaboration, J. Appl. Phys. 88, 1319 (2000).Google Scholar
19. Wahl, U., Vantomme, A., Langouche, G., Correia, J.G., Peralta, L., and the ISOLDE collaboration, Appl. Phys. Lett. 78, 3217 (2001).Google Scholar
20. Wahl, U., Rita, E., Correia, J.G., Alves, E., Araújo, J.P. and the ISOLDE collaboration, Appl. Phys. Lett. (in press).Google Scholar
21. Alves, E., Rita, E., Wahl, U., Correia, J.G., Monteiro, T., and Boemare, C., Nucl. Instrum. Meth. Phys. Res. B (in press).Google Scholar