Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T20:28:31.605Z Has data issue: false hasContentIssue false

Lithium electrochemical deintercalation from O2-LiCoO2: structural study and first principles calculations

Published online by Cambridge University Press:  11 February 2011

D. Carlier
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA, 02139, (USA) Institut de Chimie de la Matière Condensée de Bordeaux-CNRS and Ecole Nationale Supérieure de, Chimie et Physique de Bordeaux, 87 av. Dr A. Schweitzer, 33608 Pessac cedex, (France)
A. Van der Ven
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA, 02139, (USA)
G. Ceder
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Cambridge, MA, 02139, (USA)
L. Croguennec
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux-CNRS and Ecole Nationale Supérieure de, Chimie et Physique de Bordeaux, 87 av. Dr A. Schweitzer, 33608 Pessac cedex, (France)
M. Ménétrier
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux-CNRS and Ecole Nationale Supérieure de, Chimie et Physique de Bordeaux, 87 av. Dr A. Schweitzer, 33608 Pessac cedex, (France)
C. Delmas
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux-CNRS and Ecole Nationale Supérieure de, Chimie et Physique de Bordeaux, 87 av. Dr A. Schweitzer, 33608 Pessac cedex, (France)
Get access

Abstract

We present a detailed study of the O2-LiCoO2 phase used as positive electrode in lithium batteries. This phase is a metastable form of LiCoO2 and is prepared by ionic exchange from P2-Na0.70CoO2. The O2-LiCoO2 system presents interesting fundamental problems as it exhibits several phase transformations upon lithium deintercalation that imply either CoO2 sheet gliding or lithium/vacancy ordering. Two unusual structures are observed: T#2 and O6. The T#2 phase was characterized by X-ray, neutron and electron diffraction, whereas the O6 phase was only characterized by XRD.

In order to better understand the structures and the driving forces responsible for the phase transformations involved in lithium deintercalation, we combine our experimental study of this system with a theoretical approach. The voltage-composition curve at room temperature is calculated using Density Functional Theory combined with Monte Carlo simulations, and is qualitatively in good agreement with the experimental voltage curve over the complete lithium composition range. Pseudopotential and thermodynamic calculations both show that two tetrahedral sites have to be considered for Li in the T#2 structure. The calculated voltage curve thus exhibits a two-phase O2/T#2 region that indicates that this phase transformation is driven by the entropy maximization and not by a non-metal to metal transition. We also predict two ordered phases for Li1/4CoO2 (O2) and Li1/3CoO2 (O6) and show that the formation of the O6 phase is not related to Li staging or Co3+/Co4+ charge ordering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Delmas, C., Braconnier, J. J. and Hagenmuller, P., Mat. Res. Bull., 17, 117 (1982).Google Scholar
[2] Carlier, D., Saadoune, I., Suard, E., Croguennec, L., Ménétrier, M. and Delmas, C., Solid State Ionics, 144, 263 (2001).Google Scholar
[3] Mendiboure, A., Delmas, C. and Hagenmuller, P., Mat. Res. Bull., 19, 1383 (1984).Google Scholar
[4] Paulsen, J. M., Mueller-Neuhaus, J. R. and Dahn, J. R., J. Electrochem. Soc., 147(2), 508 (2000).Google Scholar
[5] Carlier, D., Saadoune, I., Ménétrier, M. and Delmas, C., J. Electrochem. Soc., 149(10), A1310 (2002).Google Scholar
[6] Paulsen, J. M., Donaberger, R. A. and Dahn, J. R., Chem. Mater., 12, 2257 (2000).Google Scholar
[7] Lu, Z., Donaberger, R. A., Thomas, C. L. and Dahn, J. R., J. Electrochem. Soc., 149(8), A1083 (2002).Google Scholar
[8] De Fontaine, D., Solid State Physics, Academic, New York (1994).Google Scholar
[9] Ceder, G., Kohan, A. F., Aydinol, M. K., Tepesch, P. D. and Van der Ven, A., J. Am. Ceram. Soc., 81(3), 517 (1998).Google Scholar
[10] Zunger, A., Statistics and Dynamics of Alloy Phase Transformations, Plenum, New York (1994).Google Scholar
[11] Van der Ven, A., Aydinol, M. K., Ceder, G., Kresse, G. and Hafner, J., Phys. Rev. B, 58(6), 2975 (1998).Google Scholar
[12] Ceder, G. and Van der ven, A., Electrochem. Acta, 45(1–2), 131 (1999).Google Scholar
[13] Arroyo y de Dompablo, M. E., Van der Ven, A. and Ceder, G., Phys. Rev. B, 66, 064112 (2002).Google Scholar
[14] Kresse, G. and Furthmuller, J., Comp. Mat. Sci., 6, 15 (1996).Google Scholar
[15] Mishra, S. K. and Ceder, G., Phys. Rev. B, 59(9), 6120 (1999).Google Scholar