Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T11:49:53.322Z Has data issue: false hasContentIssue false

Localization Phenomena, Photoluminescence and Raman Scattering in nc-Si and nc-Si/a-SiO2 Composites

Published online by Cambridge University Press:  15 February 2011

S. veprek
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenberg Str. 4, D-85747 Garching/Munich, Germany
T. Wirschem
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenberg Str. 4, D-85747 Garching/Munich, Germany
M. Rückschloβ
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenberg Str. 4, D-85747 Garching/Munich, Germany
C. Ossadnik
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenberg Str. 4, D-85747 Garching/Munich, Germany
J. Dian
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenberg Str. 4, D-85747 Garching/Munich, Germany
S. Perna
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenberg Str. 4, D-85747 Garching/Munich, Germany
I. Gregora
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenberg Str. 4, D-85747 Garching/Munich, Germany
Get access

Abstract

We present evidence for the large increase of the band gap due to the quantum localization in nc-Si imbedded in a-SiO2 matrix, which is in agreement with the original theoretical calculations. This, together with additional experimental data explains the large red shift between the onset of the excitation spectra and the photoluminescence. This also provides strong support for the mechanism of the photoluminescence which originates from radiative centers either at the Si/SiO2 interface or within the SiO2 matrix. The strong decrease of the efficiency of the photoluminescence due to a decrease of the thickness of the a-SiO2 grain boundaries is shown and its origin discussed. Delocalization of the photogenerated charge carriers due to ultra thin a-SiO2 is excluded as the cause of this effect. Microwave absorption is used to study the effect of the grain boundaries on the localization and delocalization of photogenerated charge carriers in pure nc-Si together with concomitant phenomena observed in Raman scattering. Finally we show the strong decrease of the photoluminescence decay time to ≤ 500 ps due to molecular-like radiative centers which are formed in the nc-Si/SiO2 composites by appropriate doping.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Canham, L. T., Appl. Phys. Lett. 57,1046(1990)Google Scholar
[2] Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58,856(1991)Google Scholar
[3] Brus, L., J. Phys. Chem. 98,3575(1994)Google Scholar
[4] Hybertsen, M. S., in: Porous Silicon Technology, eds. Vidal, J. -C. and Derrien, J., Springer- Verlag, Berlin (1995), p. 67 Google Scholar
[5] Delerue, C., Allan, G., Martin, E. and Lannoo, M., in: Ref [4], p. 91 Google Scholar
[6] Koch, F., Petrova-Koch, V., Muschik, T., Nikolov, A. and Gavrilenko, V., Mater. Res. Soc. Symp. Proc. 283,197(1993)Google Scholar
[7] Koch, F., Petrova-Koch, V. and Muschik, T., J. Lumin. 57,271(1993)Google Scholar
[8] Calcott, P. D. J., Nash, N. K. J., Canham, L. T., Kane, M. J. and Brunhead, M. D., J. Phys. Condens. Mater. 5,L91(1993); J. Luminesc. 57,257(1993)Google Scholar
[9] Prokes, S. M., Appl. Phys. 62,3244(1993); J Appl. Phys. 73,407(1993)Google Scholar
[10] Rüuckschloβ, M., Ambacher, O. and Veprek, S., J.Lumin, 57,1(1993)Google Scholar
[11] Hybertsen, M. S., Phys. Rev. Lett. 72,1514(1994)Google Scholar
[12] Delley, B. and Steigmeier, E. F., Phys. Rev. B 47,1397(1993)Google Scholar
[13] Allan, G., Delerue, C. and Lannoo, M., Phys. Rev. B 48,7951(1993)Google Scholar
[14] Delerue, C., Lannoo, M. and Allan, G., J. Lumin. 57,249(1993)Google Scholar
[15] Schuppler, S., Friedman, S. L., Marcus, M. A., Adler, D. L., Xie, Y. -H., Ross, F. M., Harris, T. D., Brown, W. L., Chabal, Y. J., Bruss, L. E. and Citrin, P. H., Phys. Rev. Lett. 72,2648(1994)Google Scholar
[16] Veprek, S., in: Proc. Mater. Res. Soc. Symp. Europe, Strasbourg (France) (1984), eds. Pinard, P. and Kalbitzer, S., Les éditions de Physique, Les Ulis (1984), p. 425 Google Scholar
[17] Veprek, S., Sarott, F. -A. and Iqbal, Z., Phys. Rev. B 36,3344(1987)Google Scholar
[18] Rückschloβ, M., Landkammer, B. and Veprek, S., Appl. Phys. Lett. 63,1474(1993)Google Scholar
[19] Veprek, S., Sarott, F. -A., Rambert, S. and Taglauer, E., J. Vac. Sci. Technol. A 7,2614(1989)Google Scholar
[20] Veprek, S., Tamura, H., Rückschloβ, M. and Wirschem, Th., Mater. Res. Soc. Symp. 345,311(1994)Google Scholar
[21] Veprek, S., Wirschem, Th., Rückschloβ, M., Tamura, H. and Oswald, J., Mater. Res. Symp. Proc. 358,99(1995)Google Scholar
[22] Veprek, S., Rückschloβ, M., Wirschem, Th. and Landkammer, B., Appl. Phys. Lett. 67,2215 (1995)Google Scholar
[23] Tamura, H., Rückschloβ, M., Wirschem, Th. and Veprek, S., Appl. Phys. Lett. 65,1537(1994); Thin Solid Films 255,92(1995)Google Scholar
[24] Rückschloβ, M., Wirschem, Th., Tamura, H., Ruhl, G., Oswald, J. and Veprek, S., J. Lumin. 63, 279(1995)Google Scholar
[25] Veprek, S., Invited Talk at the Wacker Symp. 2nd Münchner Silicontage, August (1994), in: Organosilicon Chemistry: From Molecules to Materials II, Ed. Auner, N., VCH Verlagsge-sellschaft, Weinheim, (1995)Google Scholar
[26] Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A. and Nakagiri, T., Appl. Phys. Lett. 56,2379(1990)Google Scholar
[27] Kanemitsu, Y., Suzuki, K., Nakayoshi, Y. and Matsumoto, Y., Phys. Rev. B 46,3916(1992)Google Scholar
[28] Wirschem, Th., Rückschloβ, M., Oswald, J. and Veprek, S., Appl. Phys. Lett. (1995) submittedGoogle Scholar
[29] Carlos, W. E. and Prokes, S. M., J. Appl. Phys. 78,2129(1995)Google Scholar
[30] Prokes, S. M. and Carlos, W. E., J. Appl. Phys. 78,2671(1995)Google Scholar
[31] Cohen, M. L. and Chelikowsky, J. R., Electronic Structure and Optical Properties of Semiconductors, Springer-Verlag, Berlin (1989)Google Scholar
[32] Iqbal, Z., Veprek, S., Webb, A. P. and Capezzuto, P., Solid State Commun. 37,993(1981)Google Scholar
[33] Iqbal, Z. and Veprek, S., J. Phys. C: Solid State Phys. 15,377(1982)Google Scholar
[34] Campbell, I. H. and Fauchet, P. M., Solid State Commun. 58,739(1986)Google Scholar
[35] Gregora, I., Ossadnik, C., Veprek, S. et al., to be publishedGoogle Scholar
[36] Rückschloss, M. and Veprek, S., to be publishedGoogle Scholar
[37] Sarott, F. -A., Igbal, Z. and Veprek, S., Solid State Commun. 42,465(1982)Google Scholar
[38] The decay time of ≤ 2–3 ns reported in our original paper was the resolution limit of the system (see [22]). More recently we were able to repeat the measurements with another, more sophisticated apparatus and obtain a decay time τ½ of about 400 ps.Google Scholar