Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T18:30:08.618Z Has data issue: false hasContentIssue false

Localized Deformation at Interfaces and Its Role in Intergranular Cavitation at High Temperatures

Published online by Cambridge University Press:  26 February 2011

L.C. Lim*
Affiliation:
Department of Mechanical and Production Engineering, National University of Singapore, Kent Ridge, Singapore 0511
Get access

Abstract

At elevated temperatures, crystal dislocations impinging onto the grain boundary become trapped and are confined to move in the interface. They form pile-ups at places where their movements are impeded in the interface the strength of which is determined by the rate of slip impingement and that of recovery in the interface. During steady state creep, a ‘steady state’ pile-up of grain boundary dislocations (GBDs) will form in the interface, providing a condition conducive to the formation of creep cavities. Calculations have shown that cavity nucleation ahead of a GBD pile-up during steady state creep is feasible under usual creep conditions in single-phase metals and alloys. It has also shown that solutes and impurities can exert a profound influence on the cavitation behavior of materials. For a solute/impurity which is surface active, which retards boundary diffusion and reduces the creep resistance of the material, it could reduce the threshold stress for cavitation failure by about an order of magnitude, thereby rendering the material highly susceptible to cavitation damage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grain Boundary Structure and Kinetics, edited by Balluffi, R.W. (American Society for Metals, Metals Park, OH, 1980).Google Scholar
2. Structure and Properties of Grain Boundaries, edited by Hagege, S. and Nouet, G. (J. Physique, Colloq. C6, 43, 1982).Google Scholar
3. Structure and Properties of Internal Interfaces, edited by Ruble, M., Balluffi, R.W., Fischmeister, H. and Sass, S.L. (J. Physique, Colloq. C4, 46, 1985).Google Scholar
4. Grain Boundary Structure and Related Phenomena, Proc. 4th JIM Int. Symp.(Suppl. Trans. Jpn. Inst. Metals, 27, 1986).Google Scholar
5. Balluffi, R.W., Komem, Y. and Schober, T., Surf. Sci. 31, 68 (1972).Google Scholar
6. Cosandey, F. and Bauer, C.L., Phil. Mag. 44, 391 (1981).Google Scholar
7. Tan, T.Y., Sass, S.L. and Balluffi, R.W., Phil. Mag. 11, 575 (1975).Google Scholar
8. Sutton, A.P. and Vitek, V., Phil. Trans. Roy. Soc. Lond. 309A, 1&37 (1983).Google Scholar
9. Bollmann, W., Michaut, B. and Saintfort, G., Phys. Stat. Sol. (a) 13, 637 (1972).Google Scholar
10. Darby, T.P., Schindler, R. and Balluffi, R.W., Phil. Mag. 37, 245 (1978).Google Scholar
11. Pond, R.C. and Smith, D.A., Phil. Mag. 36, 353 (1977).Google Scholar
12. Dingley, D.J. and Pond, R.C., Acta Metall. 27, 667 (1979).Google Scholar
13. Berghezan, A. and Fourdeux, A., J. Appl. Phys. 30, 1913 (1959).Google Scholar
14. Buzzichelli, G. and Mascanzoni, A., Phil. Mag. 24, 497 (1971).Google Scholar
15. Mori, T. and Tangri, K., Metall. Trans. 10A, 733 (1979).Google Scholar
16. Dunlop, G.L. and Nilsson, J.-O., Mater. Sci. Eng. 42, 273 (1980).Google Scholar
17. Howell, P.R. and Dunlop, G.L., in Creep Fracture of Engineering Materials and Structures, edited by Wilshire, B. and Owen, D.R.J. (Pineridge, Swansea, U.K. 1981), p. 127.Google Scholar
18. Komem, Y., Petroff, P. and Balluffi, R.W., Phil. Mag. 26, 239 (1972).Google Scholar
19. Baillin, X. and Pelissier, J., in Ref. 4, p. 731.Google Scholar
20. Lim, L.C. and Raj, R., Acta Metall. 33, 2205 (1985).Google Scholar
21. Frost, H.J., Spaepen, F. and Ashby, M.F., Scripta Metall. 16, 1165 (1982).Google Scholar
22. Lamarre, P. and Sass, S.L., Scripta Metall. 17, 1141 (1983).Google Scholar
23. Lim, L.C., Acta Metall. 35, 163 (1987).Google Scholar
24. Vitek, V., Sutton, A.P., Smith, D.A. and Pond, R.C., Phil. Mag. 39, 213 (1979).Google Scholar
25. Smith, D.A., in Ref. 2, p. 225.Google Scholar
26. Lim, L.C. and Raj, R., in Advances in Fracture Research, Vol. 6, edited by Rao, P. Rama et.al. (Pergamon Press, Oxford, U.K., 1984), p. 3773.Google Scholar
27. Forwood, C.T. and Clarebrough, L.M., Phil. Mag. 44, 31 (1981).Google Scholar
28. Fujita, H., Toyoda, K., Mori, T., Tabata, T., Ono, T. and Takeda, T., Trans. Jpn. Inst. Metals 24, 195 (1983).Google Scholar
29. Lim, L.C. and Raj, R., Acta Metall. 33, 1577 (1985).Google Scholar
30. Bamford, T.A., Hardiman, B., Shen, Z., Clark, W.A.T. and Wagoner, R.H., Scripta Metall. 20, 253 (1986).Google Scholar
31. Shen, Z., Wagoner, R.H. and Clark, W.A.T., Scripta Metall. 20, 921 (1986).Google Scholar
32. Martinez-Hernandez, M., Kirchner, H.O.K., Korner, A., George, A. and Michel, J.P., Phil. Mag. 56, 641 (1987).Google Scholar
33. Baillin, X., Pelissier, J., Bacmann, J.J., Jacques, A. and George, A., Phil. Mag. 55, 143 (1987).Google Scholar
34. Ashby, M.F., Phil. Mag. 21, 399 (1970).Google Scholar
35. Thompson, A.W., in Work Hardening in Tension and Fatigue, edited by Thompson, A.W. (AIME, 1977), p. 89.Google Scholar
36. Mecking, H., in Proc. 5th Int. Conf. Strength of Metals and Alloys, Vol. 3, edited by Haasen, P., Gerold, V. and Kostorz, G. (Pergamon Press, Oxford, 1979), p. 1573.Google Scholar
37. Pumphrey, P.H. and Gleiter, H., Phil. Mag. 30, 593 (1974).Google Scholar
38. Darby, T.P., Schindler, R. and Balluffi, R.W., Phil. Mag. 37, 245 (1978).Google Scholar
39. Varin, R.A., Wyrzykowski, J.W., Lojkowski, W. and Grabski, M.W., Phys. Stat. Sol. (a) 45, 565 (1978).Google Scholar
40. Lim, L.C., Acta Metall. 35, 1663 (1987).Google Scholar
41. Bendersky, L., Rosen, A. and Mukherjee, A.K., Int. Met. Rev. 30, 1 (1985).Google Scholar
42. Takeuchi, S. and Argon, A.S., J. Mater. Sci. 11, 1542 (1976).Google Scholar
43. Staker, M.R. and Holt, D.L., Acta Metall. 20, 569 (1972).Google Scholar
44. Raj, R. and Ashby, M.F., Acta Metall. 23, 653 (1975).Google Scholar
45. Argon, A.S., Chen, I.W. and Lau, C.W., in Creep-Fatigue-Environment Interactions edited by Pelloux, R.M. and Stoloff, N.S.. (Am. Inst. Min. Engrs., New York, 1980), p. 46.Google Scholar
46. Riedel, H., Acta Metall. 32, 313 (1984).Google Scholar
47. Fleck, R.G., Taplin, D.M.R. and Beevers, C.J., Acta Metall. 23, 415 (1975).Google Scholar
48. Yoo, M.H. and Trinkaus, H., Acta Metall. 34, 2381 (1986).Google Scholar
49. Tipler, H.R. and McLean, D., Metal Sci. 4, 103 (1970).Google Scholar
50. Holt, R.T. and Wallace, W., Int. Met. Rev. 21, 1 (1976).Google Scholar
51. Seah, M.P., Phil. Trans. R. Soc. Lond. A 295, 265 (1980).Google Scholar
52. Pope, D.P. and Wilkinson, D.S., in Ref. 17, p. 531.Google Scholar
53. White, C.L., Schneibel, J.H. and Padgett, R.A., Metall. Trans. 14A, 595 (1983).Google Scholar
54. Seah, M.P. and Hondros, E.D., Proc. Roy. Soc. Lond. A. 335, 191 (1973).Google Scholar
55. Yoo, M.H. and Trinkaus, H., Metall. Trans. 14A, 547 (1983).Google Scholar
56. Dyson, B.F. and Hondros, E.D., in Ref. 26, p. 3753.Google Scholar
57. Lim, L.C., “Cavity Nucleation at High Temperatures Involving Pile-ups of Grain Boundary Dislocations - Effect of Solutes and Impurities”, Submitted to Acta Metallurgica.Google Scholar
58. Seah, M.P., Surface Sci. 53, 168 (1975).Google Scholar
59. Chen, I.W. and Yoo, M.H., Acta Metall. 32, 1499 (1984).Google Scholar