Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T04:18:20.365Z Has data issue: false hasContentIssue false

Low Resistivity CoSi2 Surface Layers for Use as Contacts in CMOS Processes

Published online by Cambridge University Press:  28 February 2011

Sarah A. Audet
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, N.J. 07974
Conor S. Rafferty
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, N.J. 07974
Alice E. White
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, N.J. 07974
Ken T. Short
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, N.J. 07974
Yong-Fen Hsieh
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, N.J. 07974
Get access

Abstract

Uniform CoSi2 surface layers 30nm thick have been realized through room temperature implantation of Co+ through a resist or an oxide mask and low temperature (600°C) annealing. TEM studies show that the surface layers are polycrystalline with large, uniformly thick grains. Resistivity values as low as 181µΩ-cm have been obtained. Surface layers of TiSi2 have also been synthesized using a similar process. The ease of formation, the low resistivity and the smooth interfaces of the CoSi2 and TiSi2 surface layers make this technique a promising candidate for contacting source and drain junctions in sub-half-micron CMOS processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ng, K.K. and Lynch, W.T., IEEE Trans. on Electr. Dev., ED-34, 503 (1987).Google Scholar
[2] Rubin, L., Hoffman, D., Ma, D. and Herbots, N., IEEE Trans. on Electr. Dev., 37, 183 (1990).Google Scholar
[3] Pfiester, J.R., Mele, T.C., Lib, Y., Jones, R.E., Woo, M., Boeck, B. and Gunderson, C.D., Tech. Dig. IEDM, San Francisco, Dec. 9-12, 1990, 241.Google Scholar
[4] Ditchek, B.M., Journ. of Crystal Growth, 69, 207 (1984).Google Scholar
[5] Parekh, N.S., Roede, H., Bos, A.A., Jonkers, A.G.M. and Verhaar, R.D.V., IEEE Trans. on Electr. Dev., ED-38, 88 (1991).Google Scholar
[6] Hillenius, S.J., Liu, R., Georgiou, G.E., Field, R.L., Wiliams, D.S., Kornblit, A., Boulin, D.M., Johnston, R.L. and Lynch, W.T., Tech. Dig. IEDM, Los Angeles, Dec. 7-10, 1986, 252.Google Scholar
[7] van den Hove, L., Wolters, R., Maex, K., de Keersmaecker, R.F. and Declerck, G.L., IEEE Trans. on Electr. Dev., ED-34, 554 (1987).Google Scholar
[8] Tabasky, M.. Bulat, E.S., Ditchek, B.M., Sullivan, M.A. and Shatas, S.C., IEEE Trans. on Electr. Dev., ED-34, 548 (1987).Google Scholar
[9] Van den Hove, L., Vanhellemont, J., Wolters, R., Claassen, W., DeKeersmaecker, R. and Declerk, G., Solid State Devices, Springer-Verlag, Berlin, 1989, 165.Google Scholar
[10] Liu, R., Williams, D.S. and Lynch, W.T., Journ. of Appl. Phys., 63, 1990 (1988).Google Scholar
[11] Osbum, C.M., Joum. of Electron. Mat., 19, 67 (1990).Google Scholar
[12] Liu, R., Baiocchi, F.A., Heimbrook, L.A., Kovalchick, J., Malm, D.L., Williams, D.S. and Lynch, W.T. in ULSI Science and Technology, edited by Broydo, S. and Osburn, C.M. (Electrohem. Soc. Proc. 87-11, Philadelphia, PA, 1987) pp. 446462.Google Scholar
[13] Tung, R.T., Bean, J.C., Gibson, J.M., Poate, J.M. and Jacobson, D.C., Appl. Phys. Lett., 40, 64 (1987).Google Scholar
[14] White, A.E., Short, K.T., Dynes, R.C., Garno, J.P. and Gibson, J.M., Appl. Phys. Lett., 50, 95 (1987).Google Scholar
[15] Shahidi, G., Davari, B., Taur, Y., Warnock, J., Wordeman, M., Mader, S., McFarland, P., Rodriguez, M., Assenza, R., Bronner, G., Ginzberg, B., Lii, T., Polcari, M. and Ning, T., Tech. Dig. IEDM, San Francisco, Dec. 9-12, 1990, 587.Google Scholar