Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T17:23:17.628Z Has data issue: false hasContentIssue false

Low Temperature Deposition of Tacn Films Using Pentakis(Diethylamido)Tantalum

Published online by Cambridge University Press:  15 February 2011

Gyu-Chang Jun
Affiliation:
Department of Metalhlrgical Engineering, Seoul National University, Seoul, Korea
Sung-Lae Cho
Affiliation:
Department of Metalhlrgical Engineering, Seoul National University, Seoul, Korea
Ki-Bum Kim
Affiliation:
Department of Metalhlrgical Engineering, Seoul National University, Seoul, Korea
Hyun-Koock Shin
Affiliation:
Ultra Pure Chemical, Inc., Suwon, Korea
Do-Heyoung Kim
Affiliation:
LG Semicon Co., Ltd., Cheongfi, Korea
Get access

Abstract

TaCN films were deposited at low temperature (≤400 °C) by metallorganic chemical vapor deposition (MOCVD) using pentakis(diethylamido)tantalum (PDEAT) as a precursor. The activation energy of the surface reaction is about 0.79 eV and the maximum deposition rate is about 100 Å/min at 350 °C. The resistivity of the as-deposited film decreases as the deposition temperature increases and the minimum value of resistivity obtained is 6000 μΩ-cm for the sample deposited at 400 °C. Major chemical elements in the films were detected as Ta, C, and N with some amounts of O by Auger electron spectroscopy (AES). By x-ray photoelectron spectroscopy (XPS), it is identified that the most of carbon in the films was bonded to Ta. The microstructural investigation using high resolution transmission electron microscopy reveals a nanocrystalline phase with an average grain size of about 30 Å. Preliminary investigation of the diffusion barrier property for copper showed that the 300 Å of TaCN diffusion barrier was failed after annealing at 500°C for 1 hr.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Abelfotoh, M. O. and Stevensson, B. G., Phys. Rev. 44, 12742 (1991).Google Scholar
2 Broniauowski, A., Phys. Rev. Lett. 62, 3074 (1989).Google Scholar
3 Wang, S.-Q., Raaijmakers, I. J. M. M., Burrow, B. J., Suthar, S., Redkar, S., and Kim, K.-B., J. Appl. Phys. 68, 5176 (1990).Google Scholar
4 Park, K.-C. and Kim, K.-B., J. Appl. Phys. (submitted).Google Scholar
5 Holloway, K., Fryer, P. M., Cabal, C. Jr, Harper, J. M. E., and Bailey, P. J., J. Appl. Phys. 71, 5433 (1992).Google Scholar
6 Min, K.-H., Jun, G.-C., and Kim, K.-B., J. Vac. Sci. Tech. (submitted).Google Scholar
7 Charai, A., Hornstrom, H. E., Thomas, O., Fryer, P. M., and Harper, J. M. E., J. Vac. Sci. Technol. A 7, 784 (1989).Google Scholar
8 Sherman, A., J. Electrochem. Soc. 137, 1892 (1990).Google Scholar
9 Yokoyama, N., Hinode, K., and Homma, Y., J. Electrochem. Soc. 138, 190 (1991).Google Scholar
10 Raaijmakers, I. J. and Yang, J., Appl. Surf. Sci. 73, 31 (1993).Google Scholar
11 Sandhu, G. S. and Doan, T. T., Advanced Metallization for ULSI Application, edited by Rana, V, Joshi, R, and Ohdomari, I (Material Research Society, Pittsburgh, PA, 1992), p. 323.Google Scholar
12 Sun, S. C. and Tsai, M. H., Thin Solid Films 253, 440 (1994).Google Scholar
13 Eizenberg, M., Littau, K., Ghanayem, S., Mak, A., Maeda, Y., Chang, M., and Shina, A. K., Appl. Phys. Lett. 64, 2416 (1994).Google Scholar
14 Sugiyama, K., Pac, S., Takahashi, Y., and Motojima, S., J. Electrochem. Soc. 122, 1545 (1975).Google Scholar
15 Chiu, H.-T. and Chang, W.-P., J. Mater. Sci. Lett. 11, 96 (1992).Google Scholar
16 Chiu, H.-T. and Chang, W.-P., J. Mater. Sci. Lett. 11, 570 (1992).Google Scholar
17 Fix, R. M., Gordon, R. G., and Hoffman, D. M., Chem. Mater. 5, 614 (1993).Google Scholar
18 Tsai, M. H., Sun, S. C., Chiu, H. T., Tsai, C. E., and Chuang, S. H., Appl. Phys. Lett. 67, 1128 (1995).Google Scholar
19 Chiu, H.-T. and Chuang, S.-H., J. Mater. Res. 8, 1353 (1993).Google Scholar
20 Takahashi, Y., Onoyama, N., Ishikawa, Y., Motojima, S., and Sugiyama, K., Chem. Lett. 525 (1978).Google Scholar
21 Joint Committee for Powder Diffracton Standards, Powder Diffracton File No. 321283 (JCPDS International Center fro Diffraction Data, 1982).Google Scholar
22 Joint Committee for Powder Diffracton Standards, Powder Diffracton File No. 35801 (JCPDS International Center fro Diffraction Data, 1985).Google Scholar
23 Park, H.-L., (private communication).Google Scholar