Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T14:04:37.175Z Has data issue: false hasContentIssue false

Low Temperature Phase Diagram of NH3BH3

Published online by Cambridge University Press:  08 March 2011

Bertil Sundqvist
Affiliation:
Department of Physics, Umeå University, SE-90187 Umeå, Sweden
Ove Andersson
Affiliation:
Department of Physics, Umeå University, SE-90187 Umeå, Sweden
Issam Quwar
Affiliation:
Department of Physics, Umeå University, SE-90187 Umeå, Sweden
Alexandr Talyzin
Affiliation:
Department of Physics, Umeå University, SE-90187 Umeå, Sweden
Get access

Abstract

The pressure-temperature (p-T) phase diagram of NH3BH3 has been investigated by thermal conductivity measurements up to 1.5 GPa at temperatures between 100 and 300 K, and the phase boundaries between the three known structural phases have been identified. The transformation between the room temperature tetragonal I4mm phase and the low temperature orthorhombic Pmn21 phase (Tc = 218 K at p = 0) shows only a small hysteresis. The transformation into the high pressure orthorhombic Cmc21 phase (at 1.0 GPa near 292 K) has a very strong hysteresis, up to Δp = 0.5 GPa, and below 230 K a fraction of this phase is metastable even at atmospheric pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schlapbach, L. and Züttel, A., Nature 414, 353 (2001).Google Scholar
2. Filinchuk, Y., Chernyshov, D., and Dmitriev, V., Z. Kristallogr. 223, 649 (2008).Google Scholar
3. Sundqvist, B., Solid State Phenom. 150, 175 (2009), http://www.scientific.net/SSP.150.175.Google Scholar
4. Sundqvist, B. and Andersson, O., Int. J. Thermophys. 30, 1118 (2009).Google Scholar
5. George, L. and Saxena, S.K., Int. J. Hydrogen Energy 35, 5454 (2010).Google Scholar
6. Stephens, F.H., Pons, V., and Baker, R.T., Dalton Trans. issue 25, 2613 (2007).Google Scholar
7. Lin, Y., Mao, W.L., Drozd, V., Chen, J.H., and Daemen, L.L., J. Chem. Phys. 129, 234509 (2008).Google Scholar
8. Filinchuk, Y., Nevidomskyy, A. H., Chernyshov, D., and Dmitriev, V., Phys. Rev. B. 79, 214111 (2009).Google Scholar
9. Kumar, R.S., Ke, X.Z., Zhang, J.Z., Lin, Z.J., Vogel, S.C., Hartl, M., Sinogeikin, S., Daemen, L., Cornelius, A.L., Chen, C.F., and Zhao, Y.S., Chem. Phys. Lett. 495, 203 (2010).Google Scholar
10. Nylén, J., Sato, T., Soignard, E., Yarger, J.L., Stoyanov, E., and Häussermann, U., J. Chem. Phys. 131, 104506 (2009).Google Scholar
11. Håkansson, B., Andersson, P., and Bäckström, G., Rev. Sci. Instrum. 59, 2269 (1988).Google Scholar
12. Andersson, O., Soldatov, A., and Sundqvist, B., Phys. Rev. B 54, 3093 (1996).Google Scholar
13. Andersson, O. and Suga, H., Phys. Rev. B 65, 140201 (2002).Google Scholar
14. Ross, R.G. and Sandberg, O., J. Phys. C: Solid State Phys. 12, 3649 (1979).Google Scholar