Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T10:32:19.676Z Has data issue: false hasContentIssue false

Luminescence in Solutions Under Pressure

Published online by Cambridge University Press:  21 February 2011

H. W. Offen
Affiliation:
Department of Chemistry and the Marine Science InstituteUniversity of California, Santa Barbara, California 93106
W. D. Turley
Affiliation:
Department of Chemistry and the Marine Science InstituteUniversity of California, Santa Barbara, California 93106
M. L. Fetterolf
Affiliation:
Department of Chemistry and the Marine Science InstituteUniversity of California, Santa Barbara, California 93106
Get access

Extract

Probe molecules P placed in dilute solution and absorbing radiation Ia produce electronically excited species P* which can return to thermal equilibrium by radiative (luminescence) kR and nonradiative (heat) kNR processes. The relative probabilities of the two decay channels are determined by measuring the lifetime τ of P* and the luminescence quantum yield φ = I/Ia, where I is the luminescent intensity. The kinetic scheme and relevant relations are

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Singer, L. A., in “Solution Behavior of Surfactants, Mittal, K. L. and Fendler, E. J., ed., Vol. 1, Plenum, 1982, 73112.CrossRefGoogle Scholar
2. Drickamer, H. G., Ann. Rev. Phys. Chem. 1982, 33, 25.CrossRefGoogle Scholar
3. Brauer, H.-D., Schmidt, R. and Kelm, H., in High Pressure Chemistry, Kelm, H., ed., Reidel, D., 1978, 521–567.CrossRefGoogle Scholar
4. Offen, H. W., in Organic Molecular Photophysics, Birks, J. B., ed., vol. 1, J. Wiley, 1973, 103151.Google Scholar
5. Offen, H. W. and Turley, W. D., J. Phys. Chem. 1982, 86, 3501.CrossRefGoogle Scholar
6. Kirk, A. D. and Porter, G. B., J. Phys. Chem. 1980, 84, 2998.CrossRefGoogle Scholar
7. Berlman, I. B., Handbook of Fluorescence Spectra of Aromatic Molecules, Academic Press, 1971.Google Scholar
8. Caspar, J. V., Kober, E. M., Sullivan, B. P. and Meyer, T. J., J. Am. Chem. Soc. 1982, 104, 630.CrossRefGoogle Scholar
9. Srinivason, K. R. and Kay, R. L., J. Sol. Chem. 1977, 6, 357.CrossRefGoogle Scholar
10. at 30°C: Drickamer, H. G., private communication, 1983.Google Scholar
11. Tanaka, M., Kaneshina, S., Shin-No, K., Okajima, T. and Tomida, T., J. Colloid Interface Sci. 1974, 46, 132.CrossRefGoogle Scholar
12. Turro, N. J. and Okubo, T., J. Phys. Chem. 1982, 86, 159.CrossRefGoogle Scholar
13. Turro, N. J. and Okubo, T., J. Am. Chem. Soc. 1981, 103, 7224.CrossRefGoogle Scholar
14. Salman, O. A. and Drickamer, H. G., J. Chem. Phys. 1982, 77, 3329.CrossRefGoogle Scholar
15. Salman, O. A. and Drickamer, H. G., J. Chem. Phys. 1982, 77, 3337.CrossRefGoogle Scholar
16. Hara, K. and Ware, W. R., Chem. Physics 1980, 51, 61.CrossRefGoogle Scholar
17. Caspar, J. V., Sullivan, B. P., Kober, E. M. and Meyer, T. J., Chem. Phys. Lett. 1982, 91, 91.CrossRefGoogle Scholar