Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T11:57:41.379Z Has data issue: false hasContentIssue false

Magnetic Circular Dichroism of Low-Temperature-Grown AlxGa1-xAs

Published online by Cambridge University Press:  26 February 2011

A. Prasad
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720.
X. Liu
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
P. Stallinga
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
E. R. Weber
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
A. K. Verma
Affiliation:
Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720
J. S. Smith
Affiliation:
Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720
Get access

Abstract

We study magnetic circular dichroism of absorption (MCDA) of LT AlxGa1−xAs as a function of aluminum content. The MCDA spectrum of LT AlxGa1−xAs is distinctly different from the MCDA spectrum of LT GaAs, which has one paramagnetic and one diamagnetic peak at 0.95 eV and 1.18 eV, respectively. As the aluminum content increases, the spectrum of LT AlxGa1−xAs is dominated by a diamagnetic peak similar to the 1.18eV peak of the EL20-like defects in LT GaAs. However, the peak shifts to higher energies as x increases. The photoquenching and temperature dependence of this peak indicates an association with the EL2 defect. The paramagnetic peak observed in LT GaAs also shifts to higher energies but faster and eventually merges with the diamagnetic peak as the Al content increases. The study of the MCDA spectrum of LT AlxGa1−xAs as a function of aluminum content allows a better understanding of the MCDA phenomena of LT AlxGa1−xAs and LT GaAs, as well as the EL2-related transitions in bulk semi-insulating GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, F. W., Calawa, A. R., Chen, C. L., Manfra, M. J. and Mahoney, L. J., IEEE Electron Device Lettt. 9, 77 (1988).Google Scholar
2. Gupta, S., Whitaker, J. F., Williamson, S. L., Mourou, G. A, Lester, L., Hwang, K. C., Ho, P., Mazurowski, J., and Ballingall, J. M., J. of Electronic Mats. 22 (12), 1449 (1993).Google Scholar
3. Look, D. C., Walters, D. C., Manasreh, M. O., Sizelove, J. R., Stutz, C. E., and Evans, K. R., Phys. Rev. B 42, 3578 (1990).Google Scholar
4. Liu, X., Prasad, A., Chen, W. M., Kurpiewski, A., Stoschek, A., Liliental-Weber, Z., and Weber, E. R., Appl. Phys. Lett. 65(23), 3002 (1994).Google Scholar
5. Campbell, A.C., Crook, G.E., Rogers, T.J., and Streetman, B.G., J. Vac Sci. Technol. B 8, 305 (1990).Google Scholar
6. Mahalingam, K., Otsuka, N., Melloch, M. R. and Woodall, J. M., App. Phys. Lett. 60, 3253 (1992).Google Scholar
7. Verma, A. K., Tu, J., Smith, J., Fujioka, H, and Weber, E. R., J. of Elec. Mater. 22 (12), 1417 (1993).Google Scholar
8. Meyer, B. K., Spaeth, J. M., and Scheffler, M., Phys. Rev. Lett. 52 (10), 851 (1984).Google Scholar
9. Krambrock, K., Linde, M., Spaeth, J. M., Look, D. C., Bliss, D., and Walukiewiz, W., Semicond. Sci. Technol. 7, 1037 (1992).Google Scholar
10. Rong, F. C., Fotiadis, L., Sun, H. J., Watkins, G. D., Taysing-Lara, M. A., Flemish, J., Chang, W. H., Low Temperature(LT) GaAs and Related Materials, edited by Witt, G. L., Calawa, R., Mishra, U., and Weber, E. (Mat. Res. Soc. Sym. Proc. 241, Pittsburgh, PA, 1992) pp. 7580.Google Scholar
11. Liu, X., Prasad, A., Chen, W. M., and Weber, E. R., 22nd International Conference on the Physics of Semiconductors, edited by Lockwood, D. J. (3, New Jersey, 1994) pp. 2427.Google Scholar
12. Lagowski, J., Gatos, H. C., Parsey, J. M., Wada, K, Kaminska, M., and Walukiewicz, W., Appl. Phys. Lett. 40, 342 (1982).Google Scholar
13. Vincent, G. and Bois, D., Solid State Commun. 27, 431 (1978).Google Scholar
14. Pillukat, A. and Ehrhart, P., Appl. Phys. Lett. 60 (22), 2794 (1992).Google Scholar
15. Kaufmann, U., and Windscheif, J., Phys. Rev. B 38 (14), 10060 (1988).Google Scholar
16. Baj, M. and Dreszer, P., Materials Sciene Forum 3841, 101 (1989).Google Scholar
17. Menédez, J., Pinczuk, A., Werder, D. J., Valladares, J. P., Chiu, T. H., and Tsang, W. T., Solid State Communications 61(11), 703 (1987).Google Scholar
18. Meneéez, J., Pinczuk, A., Werder, D. J., Gossard, A. C., and English, J. H., Phys. Rew. B 33(12), 8863 (1986).Google Scholar
19. Prasad, A., Stallinga, P., Liu, X., Weber, E. R., Verma, A. K., and Smith, J. S., to be published.Google Scholar