Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T04:55:43.031Z Has data issue: false hasContentIssue false

Magnetic Tight-Binding Simulations of Defects in Iron

Published online by Cambridge University Press:  01 March 2011

Preetma K. Soin
Affiliation:
Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, UK
Andrew P. Horsfield
Affiliation:
Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
Duc Nguyen-Manh
Affiliation:
EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB, UK
Get access

Abstract

We consider a tight binding model for magnetic systems, in which we allow atoms to become charged and to interact via the long ranged Coulomb interaction to a published tight binding model; this is then applied to the study defects in ferromagnetic iron. We encounter several problems with achieving self consistency with existing schemes. To address the issue of instability and slow convergency we developed a robust, efficient scheme for charge and spin self consistency. This is based on minimizing an extended form of the Harris-Foulkes functional which includes spin, leading to a Newton-Raphson iterative procedure. We then apply this to both bulk and defect calculations for iron.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Boutard, J. L., Dudarev, S., and Diegele, E.. NATO Science for Peace and Security Series B - Physics and Biophysics, pp. 481500 2008.Google Scholar
2. Dudarev, S. L., L Boutard, J., Laesser, R., Caturla, M. J., Derlet, P. M., Fivel, M., Fu, C. C., Lavrentiev, M. Y., Malerba, L., Mrovec, M., Nguyen-Manh, D., Nordlund, K., Perlado, M., Schaeublin, R., Van Swygenhoven, H., Terentyev, D., Wallenius, J., Weygand, D., and Willaime, F.. Journal of Nuclear Materials, 386, 17 (2009).Google Scholar
3. Justo, J.F., Bazant, M.Z., Kaxiras, E., Bulatov, V.V., and Yip, S.. Phys Rev B, 58, 25392550 (1998).Google Scholar
4. Chen, J., Lebouvier, B., Hairie, A., Nouet, G., and Paumier, E.. Comp Mater Sci, 10, 25392550, (1998).Google Scholar
5. Duesbery, M.S., Joos, B., and Michel, D.J.. Phys Rev B, 43, 51435146 (1991).Google Scholar
6. Dudarev, S.L. and Derlet, P.M.. J Phys-Condens Mat, 17, 70977118 (2005).Google Scholar
7. Nguyen-Manh, D. and Dudarev, S. L. Phys Rev B, 80, 104440 (2009).Google Scholar
8. Goringe, C.M., Bowler, D.R., and Hernandez, E.. Rep Prog Phys, 60, 14471512 (1997).Google Scholar
9. Sutton, A.P., Finnis, M.W., Pettifor, D.G., and Ohta, Y.. J Phys C Solid State, 21, 3566 (1988).Google Scholar
10. Liu, G.Q., Nguyen-Manh, D., Liu, B.G., and Pettifor, D.G.. Phys Rev B, 71, 174115 (2005).Google Scholar
11. Harris, J.. Phys Rev B, 31, 17701779 (1985).Google Scholar
12. Foulkes, W. and Haydock, R.. Phys Rev B, 39, 12520 (1989).Google Scholar
13. Stoner, E. Proceedings of the Royal Society of London. Series A, 165, 342412 (1938)Google Scholar
14. Hubbard, J.. Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences, 276, 238257 (1963).Google Scholar
15. Horsfield, A.P.. Phys Rev B, 56, 65946602 (1997).Google Scholar
16. Kenny, S.D., Horsfield, A.P., and Fujitani, H.. Phys Rev B, 62, 48994905 (2000).Google Scholar
17. Boys, S.. Proceedings of the Royal Society of London. Series AMathematical and Physical Sciences, 200, 542554 (1950).Google Scholar
18. Herper, H.C., Hoffmann, E., and Entel, P.. Phys Rev B, 60, 38393848 (1999).Google Scholar
19. C- Fu, C., Willaime, F., and Ordejon, P.. Phys Rev. Lett. 92, 175503 (2004)Google Scholar
20. Domain, C. and Becquart, C.S.. Phys Rev B, 65, 024103 (2001)Google Scholar