Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-30T18:23:33.272Z Has data issue: false hasContentIssue false

Material and Device Issues of AlGaN/GaN HEMTs on Silicon Substrates

Published online by Cambridge University Press:  11 February 2011

P. Javorka
Affiliation:
Institute of Thin Films and Interfaces, Research Centre Jülich, D-52425 Jülich, Germany.
A. Alam
Affiliation:
Aixtron AG, D-52072 Aachen, Germany.
M. Marso
Affiliation:
Institute of Thin Films and Interfaces, Research Centre Jülich, D-52425 Jülich, Germany.
M. Wolter
Affiliation:
Institute of Thin Films and Interfaces, Research Centre Jülich, D-52425 Jülich, Germany.
A. Fox
Affiliation:
Institute of Thin Films and Interfaces, Research Centre Jülich, D-52425 Jülich, Germany.
M. Heuken
Affiliation:
Institute of Thin Films and Interfaces, Research Centre Jülich, D-52425 Jülich, Germany.
P. Kordoš
Affiliation:
Institute of Thin Films and Interfaces, Research Centre Jülich, D-52425 Jülich, Germany.
Get access

Abstract

Results on the preparation and properties of AlGaN/GaN HEMTs on silicon substrates are presented and selected issues related to the material structure and device performance devices are discussed. Virtually crack-free AlGaN/GaN heterostructures (xAlN ≅ 0.25), with low surface roughness (rms of 0.64 nm), ns ≅ 1×1013 cm−2 and μ ≅ 1100 cm2/V s at 300 K, were grown by LP-MOVPE on 2-inch (111)Si substrates. HEMT devices with Lg = 0.3–0.7 μm were prepared by conventional device processing steps. Photoionization spectroscopy measurements have shown that a trap level of 1.85 eV, additional to two levels of 2.9 and 3.2 eV found before on GaN-based HEMTs on sapphire, is present in the structures investigated. Self-heating effects were studied by means of temperature dependent dc measurements. The channel temperature of a HEMT on Si increases with dissipated power much slower than for similar devices on sapphire substrate (e.g. reaches 95 and 320 °C on Si and sapphire, respectively, for 6 W/mm power). Prepared AlGaN/GaN/Si HEMTs exhibit saturation currents up to 0.91 A/mm, a good pinch-off, peak extrinsic transconductances up to 150 mS/mm and static heat dissipation capability up to ∼16 W/mm. Unity current gain frequencies fT up to 21 and 32 GHz were obtained on devices with gate length of 0.7 and 0.5 μm, respectively. The saturation current and fT values are comparable to those known for similar devices using sapphire and SiC substrates. Properties of AlGaN/GaN/Si HEMTs investigated show that this technology brings a prospect for commercial application of high power rf devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ando, Y., Okamoto, Y., Miyamoto, H., Hayama, N., Nakayama, T., Kasahura, K., and Kuzuhara, M., Internat. Electron Devices Meeting Digest IEDM-2001, Washington DC, 381 (2001).Google Scholar
2. III-V Review 15, 17 (2002).Google Scholar
3. Chumbes, E. M., Schremer, A. T., Smart, J. A., Wang, Y., MacDonald, N. C., Hogue, D., Komiak, J. J., Lichwalla, S. J., Leoni, R. E., and Shealy, J. R., IEEE Trans. Electron Devices 48, 420 (2001).Google Scholar
4. Javorka, P., Alam, A., Fox, A., Marso, M., Heuken, M., and Kordos, P., Electron. Lett. 38, 288 (2002).Google Scholar
5. Hoel, V., Vellas, N., Gaquiére, C., De Jaeger, J. C., Cordier, Y., Semond, F., Natali, F., and Massies, J., Electron. Lett. 38, 750 (2002).Google Scholar
6. Brown, J. D., Borges, R., Piner, E., Vescan, A., Singhal, S., and Therrien, R., Solid-St. Electron. 46, 1535 (2002).Google Scholar
7. Fang, S. F., Adomi, K., Iyer, S., Morkoc, H., and Zabel, H., J. Appl. Phys. 68, R31 (1990).Google Scholar
8. Advanced Technology Materials, Inc. (2002).Google Scholar
9. Semond, F., Lorenzini, P., Grandjean, N., Masies, J., Appl. Phys. Lett. 78, 335 (2001).Google Scholar
10. Dadgar, A., Poschenrieder, M., Bläsing, J., Fehse, K., Diez, A., and Krost, A., Appl. Phys. Lett. 80, 3670 (2002).Google Scholar
11. Dikme, Y., Gerstenbrandt, G., Alam, A., Kalisch, H., Szymakowski, A., Fieger, M., Jansen, R.H. and Heuken, M., J. Cryst. Growth (2003) – in press.Google Scholar
12. Vescan, A., Brown, J. D., Johnson, J. W., Therrien, R., Gehrke, T., Rajagopal, P., Roberts, J., Singhal, S., Nagy, W., Borges, R., Piner, E., and Lithicum, K., phys. stat. solidi (2002) – in press.Google Scholar
13. Javorka, P.., Alam, A., Nastase, N., Marso, M., Hardtdegen, H., Heuken, M., Lüth, H., and Kordoš, P., Electron. Lett. 37, 1364 (2001).Google Scholar
14. Javorka, P., Master Thesis, FZ Jülich (2000).Google Scholar
15. Kuzmík, J., Javorka, P., Marso, M., and Kordoš, P., Semicond. Sci. Technol. 17, L76 (2002).Google Scholar
16. Kuzmík, J., Javorka, P., Alam, A., Marso, M., Heuken, M., and Kordos, P., IEEE Electron Device Lett. 49, 1496 (2002).Google Scholar
17. Wolter, M., Javorka, P., Fox, A., Marso, M., Lüth, H., Kordoš, P., Carius, R., Alam, A., and Heuken, M., J. Electron. Materials 31, No. 12 (2002)– in press.Google Scholar
18. Klein, P. B., J. Appl. Phys. 92, 5498 (2002).Google Scholar