Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-06T23:18:50.214Z Has data issue: false hasContentIssue false

Measured Displacement Energies of Oxygen Ions in Zirconolite and Rutile

Published online by Cambridge University Press:  21 March 2011

Katherine L. Smith
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation, PMB 1, Menai,NSW 2234, Australia. Contact author:kls@ansto.gov.au
Ronald Cooper
Affiliation:
Department of Chemistry, University of Melbourne, Parkville, Vic. 3052, Australia
Eric R. Vance
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation, PMB 1, Menai,NSW 2234, Australia.
Get access

Abstract

Optical emission spectra in the 300-700 nm range were collected from zirconolite and rutile specimens irradiated with a 3 μs pulsed electron beam using a Febetron 706 variable energy pulsed electronbeam generator. The long-lived emissions (up to microseconds after the electron pulse) consist of broad (halfwidths ~ 100 nm) bands centred around ~400 nm. Over the range 0.2 MeV to 0.6 MeV, the emission intensity per unit dose versus electron beam energy data from the rutile sample showed a single stage dependence on electron beam energy, whereas the zirconolite data suggested a two stage dependence. Rutile has a threshold of 0.23 ½ 0.02 MeV, which gives an Ed value of 39 ½ 4 eV for oxygen. Zirconolite has a threshold of 0.26 ½ 0.02 MeV, which gives an Ed value of 45 ½4 eV for oxygen. These data are discussed in the context of previously measured and calculated Ed values for other oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ringwood, E., Kesson, S. E., Ware, N. G., Hibberson, W. and Major, A., “Immobilisation of high level nuclear reactor wastes in Synroc,” Nature (London), 278 (1979 219–23).Google Scholar
2. Weber, W.J., Turcotte, R. P. and Roberts, F. P., “Radiation Damage from Alpha Decay in Ceramic Waste Forms,” Radioactive Waste Management, 2 (1982) 295319.Google Scholar
3. Weber, W.J., Wald, J.W., and , Hj, , Matzke, J. Nucl. Mater. 138 (1986) 196.Google Scholar
4. Mitamura, H., Matsumoto, S., Stewart, M. W. A., Tsuboi, T., Hashimoto, M., Vance, E.R., Hart, K. P., Togashi, Y., Kanazawa, H., Ball, C. J. and White, T.J., J. Amer. Ceram. Soc., 77 (1994) 2255–64.Google Scholar
5. Clinard, F.W. Jr, Rohr, D.L., and Roof, R.B., Nucl. Instr. Meth. Phys. Res. B1 (1984) 581.Google Scholar
6. Vernaz, E., Loida, A., Malow, G., Marples, J. A. C. and Matzke, Hj., “Long-term Stability of High-level waste Forms,” Presented at 3rd European Community Conference on Radioactive Waste Management and Disposal,” Luxembourg, Sept 17-21, 1990.Google Scholar
7. Lumpkin, G.R. and Ewing, R.C., Phys. Chem. Minerals 16 (1988) 2.Google Scholar
8. Ewing, R.C. and Headley, T.J., J. Nucl. Mater. 119 (1983) 102.Google Scholar
9. Lumpkin, G.R., Ewing, R.C., Chakoumakos, B.C., Greegor, R.B., Lytle, F.W., Foltyn, E.M., Clinard, F.W. Jr., Boatner, L.A., and Abraham, M.M., J. Mater. Res. 1 (1986) 564.Google Scholar
10. Lumpkin, G.R., Smith, K.L., and Gieré, R., Micron 28 (1997) 57.Google Scholar
11. Lumpkin, G.R., Smith, K.L., Blackford, M.G., Gieré, R., and Williams, C.T., in: and (Eds.), Scientific Basis for Nuclear Waste Management, XXI, Mater. Res. Soc. Symp. Proc. 506 (1998) 215.Google Scholar
12. Lumpkin, G.R., Day, R.A., McGlinn, P.J., Payne, T.E., Gieré, R., and Williams, C.T., in: Wronkiewicz, D.J. and Lee, J.H. (Eds.), Scientific Basis for Nuclear Waste Management XXII, Mater. Res. Soc. Symp. Proc. 556 (1999) 793.Google Scholar
13. Ewing, R.C. and Wang, L.M., Nucl. Instr. Meth. Phys. Res. B65 (1992) 319.Google Scholar
14. Smith, K.L., Zaluzec, N.J., and Lumpkin, G.R., J. Nucl. Mater. 250 (1997) 36.Google Scholar
15. Wang, S.X., Wang, L.M., Ewing, R.C., Was, G.S., and Lumpkin, G.R., Nucl. Instr. Meth. Phys. Res. B148 (1999) 704.Google Scholar
16. Wang, S.X., Lumpkin, G.R., Wang, L.M., and Ewing, R.C., Nuc. Instruments and Methods in Phys. Res. B, 166–167 (2000) 293298.Google Scholar
17. Smith, K.L., Blackford, M.G., Lumpkin, G.R., and Zaluzec, N.J., Temperature dependence of ion irradiation induced amorphisation of zirconolite, Materials Research Society Fall 1999 Meeting, Symposium on the Scientific Basis for Nuclear Waste Management XXIII, Mat. Res. Soc. Symp. Proc., in press.Google Scholar
18. Cooper, R., Smith, K. L., Colella, M., Vance, E. R. and Phillips, M., Optical Emission due to ionic displacements in alkaline earth titanate. J. Nuc. Materials, in press.Google Scholar
19. Sonder, E. and Sibley, W.A., in: Point Defects in Solids. Vol. I. Ed. , J.H. Crawford Jr. and Slifkin, L.M. (Plenum, New York, 1972) p. 201.Google Scholar
20. Henderson, B., "Anion Vacancy Centers in Alkaline Earth Oxides"; C.R.C Crit.Rev.Solid State Mater. Sci.; 9; 1-60;[1980]Google Scholar
21. Caulfield, K.J., Cooper, R., and Boas, J.F., (1995) J Am Ceramics Soc., 78, 1054.Google Scholar
22. Evans, B.D. & Stapelbroek, M. "Optical Properies of the F+ Center in Crystalline Al2O3" Phys RevB, 18; 7089 [1978]Google Scholar
23. Humphreys, K.C. and Kantz, A.D., Radiat. Phys. Chem., 9 (1977) 737747.Google Scholar
24. Zinkle, S.J. and Kinoshita, C., Defect production in solids, J. Nucl. Mater. 251 (1997) 200217.Google Scholar
25. Williford, R.E., Devanathan, R. and Weber, W.J. (1998) Computer simulation of displacement energies for several ceramic materials, Nuc. Instruments and Methods in Phys Res B, 141 (1998) 9498.Google Scholar