Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-27T21:25:17.840Z Has data issue: false hasContentIssue false

Measurement of Thermally-Induced Strains in Polycrystalline Al Thin Films on Si Using Convergent Beam Electron Diffraction

Published online by Cambridge University Press:  15 February 2011

S. K. Streiffer
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestraβe 92, D-70174 Stuttgart, Germany
S. Bader
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestraβe 92, D-70174 Stuttgart, Germany
C. Deininger
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestraβe 92, D-70174 Stuttgart, Germany
J. Mayer
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestraβe 92, D-70174 Stuttgart, Germany
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, Seestraβe 92, D-70174 Stuttgart, Germany
Get access

Abstract

Strains in polycrystalline Al films grown on oxidized Si wafers were measured using convergent beam electron diffraction (CBED). CBED patterns were acquired on a Zeiss EM 912 TEM equipped with an imaging energy filter and CCD camera. HOLZ line positions in the (000) CBED disk were matched using an automated refinement procedure. A sensitivity to variations in lattice parameter of approximately 0.00007 nm was obtained. Strong deviations from a simple equibiaxial strain, perfect [111] texture model were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. see, e.g., Schute, C.J. and Cohen, J.B., J. Mater. Res. 6, 950 (1991); M.F. Doerner and S. Brennan, J. Appl. Phys. 63, 126 (1988); M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986).Google Scholar
2. Lin, Y.P., Preston, A.R., and Vincent, R., EMAG 1987, IOP Conference Series No. 90 (Institute of Physics, Bristol) p. 115.Google Scholar
3. Zuo, J.M., Ultramicroscopy 41, 211 (1992).Google Scholar
4. see Spence, J.C.H. and Zuo, J.M., Electron Microdiffraction (Plenum Press, New York, 1992).CrossRefGoogle Scholar
5. Zuo, J.M., Gjønnes, K., and Spence, J.C.H., J. Electron Microsc. Tech. 12, 29 (1989).Google Scholar
6. Deininger, C., Neckar, G., and Mayer, J., accepted for publication in Ultramicroscopy.Google Scholar
7. implemented in IMSUIDL, IMSL, Inc. Sugar Land, TX.Google Scholar
8. Mansfield, John, Bird, David, and Saunders, Martin, Ultramicroscopy 48, 1 (1993).Google Scholar
9. Maier, H.J., Renner, H., and Mughrabi, H., Ultramicroscopy 51, 136 (1993); S.J. Rozeveld, J.M. Howe, and S. Schauder, Acta Metall. 40, S173 (1992).Google Scholar
10. Egerton, R.F., Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum Press, New York, 1986), p. 294.Google Scholar