Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:29:01.183Z Has data issue: false hasContentIssue false

Mechanical Properties of Binary Ni3Al Single Crystals

Published online by Cambridge University Press:  15 February 2011

J. Bonneville
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland), bonneville@eldpb.epfl.ch
J.-L. Martin
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland), bonneville@eldpb.epfl.ch
P. Spätig
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland), bonneville@eldpb.epfl.ch
B. Viguier
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland), bonneville@eldpb.epfl.ch
B. Matterstock
Affiliation:
Ecole Polytechnique Fédérale de Lausanne, Institut de Génie Atomique, Département de Physique, 1015 Lausanne (Switzerland), bonneville@eldpb.epfl.ch
Get access

Abstract

The mechanical properties of binary Ni76.6Al23.4 single crystalline specimens have been studied in compression test over a wide range of temperature (293–1100K). The resolved proof stress (τ0.2%) and the corresponding work-hardening rate (θ0.2%) have been measured as a function of temperature. In addition, a technique of repeated stress relaxations has been used to investigate the related microscopic activation volume (V0.2%) and to characterize the variation in the density of mobile dislocations that occurs during such transient tests. It is observed that not only τ0.2% exhibits an anomalous behavior with temperature but also θ0.2%, while the stress dependence of V0.2% may be considered as normal, i.e. V0.2% is a monotonie decreasing function of stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Beardmore, P., Davies, R.G. and Johnston, T.L., Trans. AIME 245, 1537 (1969).Google Scholar
2. Westbrook, J. H., Trans. TMS-AIME 209, 898 (1957).Google Scholar
3. Staton-Bevan, A.E., Phil. Mag. A 47, 939 (1983).Google Scholar
4. Miura, S., Ochiai, S., Oya, Y., Mishima, Y. and Suzuki, T. in High-Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A.I., Stoloff, N. S. and Koch, C. C. (Mat. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989) pp. 341346.Google Scholar
5. Takasugi, T., Watanabe, S., Izumi, O. and Fat-Halla, N.K., Acta Met. 37, 3425 (1989).Google Scholar
6. Thornton, P.H., Davies, R.G. and Johnston, T.L., Metall. Trans. 207, 1 (1970).Google Scholar
7. Ezz, S. S. and Hirsch, P. B., Phil. Mag. A 69, 105 (1994).Google Scholar
8. Bonne ville, J. and Martin, J.-L. in High-Temperature Ordered Intermetallic Alloys IV. edited by Johnson, L. A., Pope, D. P. and Stiegler, J. O. (Mat. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991) pp. 629634.Google Scholar
9. Spätig, P., Bonneville, J. and Martin, J.-L., Mat. Sei. Eng. A 167, 73 (1993).Google Scholar
10. Spätig, P., Bonneville, J. and Martin, J.-L., High-Temperature Ordered Intermetallic Alloys VI edited by Horton, J.A., Baker, I., Hanada, S., Noebe, R.D., Schwartz, D.S. (Mat. Res. Soc. Symp. Proc. 364 Part 2, Pittsburgh, PA, 1995) pp. 713718.Google Scholar
11. Spätig, P., Bonneville, J. and Martin, J.L. in Strength of Materials, edited by Oikawa, H., Maruyama, K., Takeuchi, S. and Yamaguchi, M. (Proc. of the 10th Int. Conf. on the Strengh of Materials, Sendai, The Japan Institute of Metals 1994) pp. 353356.Google Scholar
12. Guiu, F. and Pratt, P. L., Phys. Stat. Sol. 6, 111 (1964).Google Scholar
13. Spätig, P., Ph. D. Dissertation no 1407, Ecole Polytechnique Fédérale de Lausanne (1995).Google Scholar
14. Bonneville, J., Spätig, P. and Martin, J.-L., High-Temperature Ordered Intermetallic Alloys VI edited by Horton, J.A., Baker, I., Hanada, S., Noebe, R.D., Schwartz, D.S. (Mat. Res. Soc. Symp. Proc. 364 Part 1, Pittsburgh, PA, 1995) pp. 369374.Google Scholar
15. Bonneville, J., Baluc, N. and Martin, J.L. in Intermetallic Compounds-Structure and Mechanical Properties, edited by Izumi, O. (Proc. 6th JIMIS on Intermetallics, Sendai, The Japan Institute of Metals 1991) pp. 323330.Google Scholar
16. Heredia, F., Ph. D. Dissertation, University of Pennsylvania (1990).Google Scholar
17. Spätig, P., Bonneville, J. and Martin, J.L., Proc. of the 4th European Conf. on Advanced Materials and Processes Symp. Padua, G, Italy, 97 (1995).Google Scholar
18. Viguier, B., Ph. D. Dissertation no 1375, Ecole Polytechnique Fédérale de Lausanne (1995).Google Scholar