Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T20:22:23.375Z Has data issue: false hasContentIssue false

Mechanical Stresses in Aluminum and Copper Interconnect Lines for 0.18µm Logic Technologies

Published online by Cambridge University Press:  10 February 2011

Paul R. Besser
Affiliation:
Technology Development Group of Advanced Micro Devices, Inc. One AMD Place, Sunnyvale, CA 94088. Current address: Motorola-AMD Alliance Logic Technology, 3501 Ed Bluestein Blvd, MD K-10, Austin, TX 78721.
Young-Chang Joo
Affiliation:
Technology Development Group of Advanced Micro Devices, Inc. One AMD Place, Sunnyvale, CA 94088.
Delrose Winter
Affiliation:
#AMIA Laboratories (Advanced Materials Instruments and Analysis, Inc.) 7801 North Lamar, Suite C-73, Austin, TX 78752
Minh Van Ngo
Affiliation:
Technology Development Group of Advanced Micro Devices, Inc. One AMD Place, Sunnyvale, CA 94088.
Richard Ortega
Affiliation:
#AMIA Laboratories (Advanced Materials Instruments and Analysis, Inc.) 7801 North Lamar, Suite C-73, Austin, TX 78752
Get access

Abstract

The mechanical stress state of conventional Al and damascene Cu lines of a 0.18 pm logic technology flow have been determined using a novel X-Ray diffraction method that permits measurement of stress on an array of critical-dimension lines on the product die. The effect of high density plasma oxide deposition and the influence of low-K dielectrics on the stress state of the Al lines is described. The effect of materials properties and fabrication methodology on the stress state of damascene Cu lines is shown with measurement of mechanical stress and strain in passivated lines at room temperature and during annealing. The effect of underlayer on the damascene Cu stress state is also quantified.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Flinn, P.A. and Chiang, C., J. Appl. Phys. 67, 2927 (1990).Google Scholar
2. Tezaki, A. et al., 1990 IEEE IRPS Conference Proceedings, 221 (1990).Google Scholar
3. Besser, P.R., Marieb, T.N., Lee, J., Flinn, P.A.. and Bravman, J.C., J. Mater. Res. 11 (1), 184 (1996).Google Scholar
4. Besser, P.R., Brennan, S.. and Bravman, J.C., J. Mater. Res. 9 (1), 13 (1994).Google Scholar
5. Besser, P.R., Venkatraman, R., Brennan, S.. and Bravman, J.C., MRS Symp. Proc. 239, 233 (1992).Google Scholar
6. Hinode, K., Asano, I.. and Homma, Y., IEEE Trans. Elect. Dev. 36 (6), 1050 (1989).Google Scholar
7. Yue, J.T., Funsten, W.P.. and Taylor, R.V., 1985 IEEE IRPS Conf. Proc., 1 (1985).Google Scholar
8. Sauter, A.I. and Nix, W.D., IEEE Trans. Comp. Hybrids and Manuf. Technol. 15 (4), 594 (1992).Google Scholar
9. Hosada, et al., 1990 IEEE IRPS Conf. Proc., 77 (1991).Google Scholar
10. Kasthyuriarangan, J., Dissertation, Ph. D., University of Texas (1997).Google Scholar
11. Besser, P.R. et al., Proceedings of the 1998 Advanced Metallization Conf., Colorado Springs, CO. To be published by MRS (1999).Google Scholar
12. Edelstein, D. et al., IEEE Int. Electron Devices Meeting Digest, 773 (1997).Google Scholar
13. Venkatasen, S. et al., IEEE Int. Electron Devices Meeting Digest, 769 (1997).Google Scholar
14. Licata, T. et al., Proc. VLSI Multilevel Interconnection Conf., 596 (1995).Google Scholar
15. Vinci, R.P., Zielinski, E.M.. and Bravman, J.C., MRS Symp. Proc. 308, 297 (1992).Google Scholar
16. Vinci, R.P., Marieb, T.N.. and Bravman, J.C., MRS Symp. Proc. 338, 289 (1994).Google Scholar
17. Nogami, T. et al., Proceedings of the 1998 Advanced Metallization Conf., Colorado Springs, CO. To be published by MRS (1999).Google Scholar
18. Vinci, R.P., Zielinski, E.M.. and Bravman, J.C., Thin Solid Films 262, 142 (1995).Google Scholar
19. Dirk Brown, Advanced Micro Devices, Inc. Private communication (1998).Google Scholar
20. Besser, P.R., Sanchez, J.E., Jr. and Field, D.P., Advanced Metallization and Interconnect Systems for ULSI Applications in 1996, MRS Symp. Proc., 8995 (1997).Google Scholar
21. Vanasupa, L., Joo, Y-C, Besser, P.R. and Pramanick, S., J. Appl. Phys. 85 (5) 2583 (1999).Google Scholar
22. Lingk, C. et al., Proceedings of the 1998 Advanced Metallization Conf., Colorado Springs, CO. To be published by MRS (1999).Google Scholar
23. Lingk, C., Gross, M.E.. and Brown, W.L., Appl. Phys. Lett. 74 (5) (1999).Google Scholar
24. Knorr, D.B., Rodbell, K.P.. and Tracy, D.P., Mat. Res. Soc. Symp. Proc. 225, 21 (1991).Google Scholar
25. Knorr, D. B., Mat. Res. Soc. Symp. Proc. 309, 75 (1993).Google Scholar
26. Refer to the Proceedings of either the 1998 Advanced Metallization Conf. or the 1998 Int. Interconnect Tech. Conf. sited in [11] and [22].Google Scholar
27. Lingk, C. and Gross, M.E., J. Appl. Phys. 84(10), 5547 (1998).Google Scholar