Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-13T21:53:16.442Z Has data issue: false hasContentIssue false

Mechanism of Dose-Rate Dependence of Electrical Activation in Ion-Implanted GaAs

Published online by Cambridge University Press:  25 February 2011

Toshihiko Kanayama
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba-shi, Ibaraki 305, Japan
Hisao Tanoue
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba-shi, Ibaraki 305, Japan
Get access

Abstract

To elucidate the mechanism of dose rate (DR) dependence of electrical activation, following two questions are investigated; why the amount of damage remaining after ion bombardment depends on DR and why it affects the electrical activation after high temperature annealing. From the observation that the DR dependence scales with temperature, the activation energy of recovery during ion irradiation has been estimated to be 0.75 and 1.0 eV. A higher DR suppresses the recovery and results in more damage, which in turn delays the electrical activation of implanted impurities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vook, F. L. and Picraux, S. T., in Ion Implantation in Semiconductors, edited by Ruge, I. and Graul, J. (Springer, Berlin, 1971) pp. 141150;Google Scholar
Harris, J. S., in Ion Implantation in Semiconductors, edited by Ruge, I. and Graul, J. (Springer, Berlin, 1971) pp. 157167.Google Scholar
2. Ahmed, N. A. G., Christodoulides, C. E., and Carter, G., Radiat. Eff. 52, 211 (1980).Google Scholar
3. Wendler, F., Wesch, W., and Gots, G., Nucl. Instrum. Methods B52, 57 (1990).Google Scholar
4. Moore, F. G., Dietrich, H. B., Dobisz, E. A., and Holland, O. W., Appl Phys. Lett. 57, 911 (1990).CrossRefGoogle Scholar
5. Haynes, T. W. and Holland, O. W., Appl Phys. Lett. 58, 62 (1991); Nucl. Instrum. Methods B59/60, 1028 (1991).Google Scholar
6. Moore, F. G. and Dietrich, H. B., Nucl. Instrum. Methods B59/60, 978 (1991).CrossRefGoogle Scholar
7. Lezec, H. J., Musil, C. R., Melngaillis, J., Mahoney, L. J., and Woodhouse, J. D., J. Vac. Sci. Technol. B9, 2709 (1991).Google Scholar
8. Thommen, K., Radiat. Eff. 2, 201 (1970).CrossRefGoogle Scholar
9. Komuro, M., Kanayama, T., Hiroshima, H., and Tanoue, H., Appl Phys. Lett. 42 908 (1983).CrossRefGoogle Scholar
10. Komuro, M., Hiroshima, H., Tanoue, H., and Kanayama, T., J. Vac. Sci. Technol. B1 985 (1983).Google Scholar